购物车图片 购物车 ( )
产品分类

射频滤波器

日期: 2019-08-02
浏览次数: 14

         

     滤波器  是射频系统中必不可少的关键部件之一,主要是用来作频率选择----让需要的频率信号通过而反射不需要的干扰频率信号。经典的滤波器应用实例是接收机或发射机前端,如图1、图2所示:

射频滤波器

从图1中可以看到,滤波器广泛应用在接收机中的射频、中频以及基带部分。虽然对这数字技术的发展,采用数字滤波器有取代基带部分甚至中频部分的模拟滤波器,但射频部分的滤波器任然不可替代。因此,滤波器是射频系统中必不可少的关键性部件之一。滤波器的分类有很多种方法。例如:按频率选择的特性可以分为:低通、高通、带通、带阻滤波器等;

按实现方式可以分为:LC滤波器、声表面波/体声波滤波器、螺旋滤波器、介质滤波器、腔体滤波器、高温超导滤波器、平面结构滤波器。按不同的频率响应函数可以分为:切比雪夫、广义切比雪夫、巴特沃斯、高斯、贝塞尔函数、椭圆函数等。对于不同的滤波器分类,主要是从不同的滤波器特性需求来描述滤波器的不同特征。滤波器的这种众多分类方法所描述的滤波器不同的众多特征,集中体现出了实际工程应用中对滤波器的需求是需要综合考量的,也就是说对于用户需求来做设计时,需要综合考虑用户需求。滤波器选择时,首先需要确定的就是应该使用低通、高通、带通还是带阻的滤波器。下面首先介绍一下按频率选择的特性分类的高通、低通、带通以及带阻的频率响应特性及其作用。

射频滤波器

射频滤波器

巴特沃斯切比雪夫带通滤波器

射频滤波器

巴特沃斯切比雪夫高通滤波器

最常用的滤波器是低通跟带通。低通在混频器部分的镜像抑制、频率源部分的谐波抑制等有广泛应用。带通在接收机前端信号选择、发射机功放后杂散抑制、频率源杂散抑制等方面广泛使用。滤波器在微波射频系统中广泛应用,作为一功能性部件,必然有其对应的电性能指标用于描述系统对该部件的性能需求。对应不同的应用场合,对滤波器某些电器性能特性有不同的要求。描述滤波器电性能技术指标有:阶数(级数)绝对带宽/相对带宽截止频率驻波带外抑制纹波损耗通带平坦度相位线性度绝对群时延群时延波动功率容量相位一致性幅度一致性工作温度范围

下面对滤波器这些电性能指标作逐一解释。阶数(级数):对于高通和低通滤波器来讲,阶数就是滤波器中电容电感的个数总和。对于带通滤波器来讲,阶数是并联谐振器的总数;对于带阻滤波器来讲,阶数是串联谐振器与并联谐振器的总数。绝对带宽/相对带宽:该指标通常用于带通滤波器,表征可以通过滤波器的信号频率范围,体现滤波器的频率选择。相对带宽是绝对带宽与中心频率的百分比。

射频滤波器

五阶高通滤波器

截止频率:截止频率通常用于高通跟低通滤波器。对于低通滤波器截止表征滤波器最高能通过的频率范围;对于高通滤波器,截止频率表征滤波器最低能通过的频率范围。驻波:即矢网测得的S11,表示滤波器端口与系统所需阻抗的匹配程度。表示输入信号有多少未能进入滤波器而被反射回输入端。

射频滤波器

九阶低通滤波器仿真曲线

损耗:损耗表示信号通过滤波器后损失的能量,也就是滤波器消耗的能量。通带平坦度:滤波器通带范围内损耗最大值与损耗最小值之差的绝对值。表征滤波器对不同频率信号的能量消耗的区别。带外抑制:滤波器通带频率范围以外的“衰减量”。表征滤波器对不需要的频率信号的选择能力。纹波:滤波器通带内S21曲线起伏的波峰与波谷之间的差值。相位线性度:滤波器通带频率范围内相位与一条与中心频率时延相等的传输线之间的相位差值。表征滤波器的色散特性。绝对群时延:滤波器通带范围内信号从输入端口传输至输出端口所用的时间。群时延波动:滤波器通带范围内绝对群时延最大值与最小值之差。表征滤波器的色散特性。功率容量:可以输入滤波器的通带信号的最大功率。相位一致性:同一指标同一批次不同滤波器之间的传输信号相位的差值。表征批次滤波器之间的差别(一致性)。幅度一致性:同一指标同一批次不同滤波器之间的传输信号损耗的差值。表征批次滤波器之间的差别(一致性)。相位线性度:滤波器通带频率范围内相位与一条与中心频率时延相等的传输线之间的相位差值。表征滤波器的色散特性。绝对群时延:滤波器通带范围内信号从输入端口传输至输出端口所用的时间。群时延波动:滤波器通带范围内绝对群时延最大值与最小值之差。表征滤波器的色散特性。功率容量:可以输入滤波器的通带信号的最大功率。相位一致性:同一指标同一批次不同滤波器之间的传输信号相位的差值。表征批次滤波器之间的差别(一致性)。幅度一致性:同一指标同一批次不同滤波器之间的传输信号损耗的差值。表征批次滤波器之间的差别(一致性)。

射频滤波器

LC滤波器

声表面波/体声波滤波器声表采用将电能转换为表面声波的方式,利用声波共振效应实现的滤波。该声表面波滤波器的特点是体积非常小,Q值相对LC高,采用半导体工艺适合批量生产。一只800MHz左右的滤波器体积大概只有一个0805电容大小。其缺点是功率容量小,不适合小批量定制产品,研发周期长,研发成本高。声表滤波器通常应用在终端消费电子产品中。

射频滤波器

螺旋滤波器

螺旋滤波器:螺旋滤波器是一种半集总参数的滤波器,其采用放置在空腔内的螺旋电感的自谐振来实现谐振器,通过相邻谐振器的空间磁场实现耦合。其优点是:体积较腔体小,Q值、功率容量较LC高。其缺点是:较难实现宽带,高频部分电感不易实现。螺旋滤波器通常用在500MHz以下20%相对带宽,100W平均功率,对插损有一定要求的场合。

射频滤波器

介质滤波器

纹波:滤波器通带内S21曲线起伏的波峰与波谷之间的差值。介质滤波器介质滤波器是采用介质填充的四分之一波长短路线或者二分之一开路线实现的半集总滤波器。其优点是Q值较LC高,可以实现较LC滤波器频率高的滤波器。其缺点是寄生较近,谐振器需要定制。

射频滤波器

梳状腔体滤波器

交指滤波器最大的特点是可以实现宽带,如果采用冗余谐振杆,考虑到机加可是线性,其相对带宽通常可以宽达60%。同时在K波段时,宽带的梳状滤波器机加基本无法加工并且调试螺钉无法放置,因此在该条件下通常采用交指结构。交指结构与梳状相比其寄生通带较近,通常其寄生通带在1.8F0左右。同体积下,交指滤波器较梳状滤波器功率容量大。滤波器是无线通讯系统必不可少的关键性部件。滤波器种类繁多,各种滤波器具有不同的性能特点,因此在滤波器选择时,通常需要综合考虑客户的实际使用环境以及客户性能需求才能做出正确、有效、可靠的选择。在客户对滤波器指标概念比较模糊时,通常需要询问客户体积、损耗、带外需要抑制的频率以及抑制度、功率容量等。根据这几个简单的指标要求基本可以判断出滤波器种类。

以上是射频系统中滤波器的介绍,那么怎么选择适合的滤波器呢?

      在不了解会受到何种损害的情况下,具备高深的数字电子知识的设计师发现,当需要给无线器件确定滤波器参数时,急需复习射频基础知识。

如果没有考虑滤波器类型和最低技术规格要求方面的基本要素,可能导致产品不能通过“测试”,结果产品又得重新开始设计,导致代价昂贵的生产推迟。另一方面,懂得如何准确确定滤波器参数,将有助于使生产出的产品满足客户的生产标准和功能。事实上,这种知识有助于在提高产品在市场上的成功机会的同时,控制生产费用。

       从基础开始

       在当今无线领域,激烈的扩展带宽的竞争迫使人们要更加关注滤波器的性能。如果对滤波器参数确定不准确,最终会导致频率冲突,反过来使设计组又得处理串扰、掉线、数据丢失以及网络连接中断的问题。

       滤波器定义不完整或不准确这一问题产生的部分原因是目前电子市场对数字电子很热衷。根据某些统计,80%~90%的新电子设计工程师都是软件和数字方面的。知识缺口就在于此,因为不管传输的信息是否是数字形式,当信息通过无线电或微波传输时,载波信号总是遵守电磁学物理定律。

      所幸的是,对滤波器性能参数的某些重要基础进行快速重温,可帮助工程师正确找出满足特定应用的滤波器。开始时如果选择正确,则能节省时间和金钱,在订购这些必不可少的元件时就能确保价廉物美。

       1、了解基本响应曲线

       滤波器的基本响应曲线包括:带通、低通、高通、带阻、双工器,如图1A-1F所示。每一个特定形状都决定了哪些频率可以通过,哪些不能通过。

无疑,这一组中最常见的是带通滤波器。所有工程师都知道,带通滤波器允许两个特定频率之间的信号通过,对其它频率的信号进行抑制。例如声表面波滤波器(SAW)、晶体滤波器、陶瓷和腔体滤波器。作为参考,Anatech Electronics 公司制造的腔体带通滤波器的频率覆盖范围为15 MHz~20 GHz,带宽在1%~100%范围。下表给出了Anatech Electronics公司的集总元件带通滤波器的全部技术参数。所有制造商都采用了用滤波器中心频率两边0.5 dB、1 dB或3 dB衰减点定义通频带的方法。

       2、包括所有必要的技术参数

       经常出现这一情况,工程师给出一个需要“一个100 MHz带通滤波器”的简短要求,这一要求显然信息量太少了。滤波器供应商实在难以根据这么点信息就签单。

       给出所有必要的信息从详细给出所有频率参数开始,如:

       中心频率(Fo): 通常定义为带通滤波器(或带阻滤波器)的两个3 dB点之间的中点,一般用两个3 dB点的算术平均来表示。

       截止频率(Fc):为低通滤波器或高通滤波器的通带到阻带开始的转换点,该转换点一般为3 dB点。

       抑制频率:信号衰减某些特定值或值的集合的特定频率或频率组。有时定义理想通带之外的频率区为抑制频率或频率组,所经过的衰减称为抑制。

       滤波器类型决定了特定频率。对带通和带阻滤波器,特定频率为中心频率。对低通和高通滤波器,特定频率为截止频率。

       为了完整起见,工程师还应定义下列特性,如:

       阻带:滤波器不传输的特定频率值之间的频率带。

       隔离:双工器中,考虑接收(Rx)通道时为抑制传输(Tx)频率的能力,考虑传输(Tx)频率时为抑制接收(Rx)频率的能力,称为Rx/Tx隔离。隔离度越高,滤波器能够将Rx信号与Tx信号隔离开的能力就越强,反之亦然。其结果是传输和接收信号都更加干净。

      插入损耗(IL):表示器件中功率损耗的一个值,IL =10Log(Pl/Pin),与频率无关,其中Pl为负载功率,Pin为从发生器输入的功率。

      回波损耗(RL):为滤波器性能的一种度量,表示滤波器输入和输出阻抗接近理想阻抗值的程度。回波损耗定义为:RL = 10Log(Pr/Pin),与频率无关,其中Pr为反射回发生器的功率。

      群延迟(GD):群延迟表示器件相位线性的大小。由于相位延迟出现于滤波器的输出端,了解这种相移随频率的变化是否为线性很重要。如果相移随频率非线性变化,输出波形将发生畸变。 群延迟定义为相移随频率变化的导数。因为线性函数的导数为常数,所以线性相移引起的群延迟为常数。

      形状因子(SF): 滤波器的形状因子通常为阻带带宽(BW)与3 dB带宽的比值。它是滤波器边缘的陡峭程度的一种量度。例如,如果40 dB带宽为40 MHz,3 dB带宽10 MHz,则形状因子为40/10=4。

      阻抗:以欧姆为单位的滤波器源阻抗(输入)和端接阻抗(输出)。一般情况下,输入阻抗和输出阻抗相同。

      相对衰减:测到的最小衰减点处衰减与理想抑制点的衰减的差异。通常,相对衰减以dBc为单位表示。

      纹波(Ar):表示滤波器通频带平坦度的大小,一般以分贝表示。滤波器纹波的大小影响回波损耗。纹波越大,则回波损耗越严重,反之亦然。

      抑制:同上。

      工作温度:滤波器设计的工作温度范围。

       3、不要追求不切实际的滤波器特性

       工程师有时会提出如下的要求:“我需要通频带为1,490~1,510 MHz,1,511 MHz处的抑制大小为70 dB。”这一要求无法实现。实际上,抑制是逐渐变化的,不是90°急剧下降,更实际的参数为偏离中心频率约10%。

       另一个情况是要求滤波器例如“抑制1,960 MHz频率以上的所有成分。”这时,工程师必须意识到不可能衰减该抑制频率直到无限高频率之间的所有频率。必须设置某些边界。更现实的方法或许是,将通频带附近的特定抑制频率衰减两到三倍。

       4、争取实现合理的VSWR

       常使用电压驻波比(VSWR)表示滤波器的效率,为一比值,大小在1到无穷大之间,用来表示反射能量的大小。1表示所有能量都无损耗通过。大于1 的所有值都表示有部分能量被反射,即浪费了。

      但是,在实际的电子电路中,1:1 的VSWR几乎不可能达到。通常,比值1:5更实际一些。如果要求达到的值小于该值,则会降低效益成本比。

      5、考虑功率处理能力

      功率处理能力为以瓦为单位的额定平均功率,超过该值则滤波器性能会降低或者失效。此外还需要注意,滤波器的尺寸在某种程度上决定于其功率处理能力的要求。一般地,功率越大,则滤波器所占电路板面积越大。制造商,如Anatech,一直致力于使用新型算法来满足这些挑战性的利益需求,预先在算法上作规划能节省成本。

      6、同时、双向通讯中的隔离因素

      隔离是双工器的一个特别重要的方面,从接收通道看时,隔离表示滤波器抑制传输频率的能力,反之亦然。隔离越大,则两者分得越开,传输信号和接收信号就越干净。

      7、注意作出取舍

      性能越高则成本越高。这正是为什么需要准确定义的原因,因为准确定义可以减少不需要的极端情况,因而能够避免不必要的费用开支。

      除此之外,对其他因素也需要互相权衡。例如,抑制频率与中心频率越接近,则滤波器越复杂,这有时会造成插入损耗更大。

      另外,滤波器性能越高通常使其占板面积越大。例如,从通频带到抑制的非常陡峭的转变需要具备更多腔体和段数,使滤波器更复杂。但是如果电路板费用很重要,则性能有时必须有所削减。

      8、寻找可以在各种要求之间作出平衡的制造商

      虽然滤波器销售商与滤波器性能的固有特性无关,但选择滤波器销售商时,还是需要像关注元件本身要求一样对此予以关注。一个优秀而稳定的专门生产滤波器的制造商,能时常生产出特定部件来弥补产品设计缺陷。


    (文章来自互联网,由永阳微波小编整理,如有问题,请联系修正或删除)

  • 相关新闻 / News More
  • 点击次数: 0
    2025 - 03 - 04
    HMC704LP4ETR是由Analog Devices公司研发的一款集成锁相环芯片,主要用于频率合成与信号的相位同步。其基本工作原理是通过比较输入信号的相位与输出信号的相位,以此来控制一个振荡器,使得输出信号的相位与输入信号相位保持一致。在此过程中,PLL内部包含了相位比较器、低通滤波器和压控振荡器等重要模块。相位比较器的作用是监测输入信号与反馈信号之间的相位差,并生成相应的电压信号来驱动压控振荡器。在这个过程中,低通滤波器的设计尤为重要,因为它会影响锁相环的动态性能与抗干扰能力。理想的低通滤波器能够有效滤除高频噪声,并保持相位同步的稳定性。在卫星通信系统中,HMC704LP4ETR也展现出其独特的价值。卫星通信对频率稳定性及相位调制精度有极高的要求,而HMC704LP4ETR凭借其卓越的相位噪声性能与调节精度,成为卫星通信终端的理想选择。此外,该芯片还可以用于飞机通信、航空航天等领域,支持高精度信号传输与处理。在消费电子产品中,HMC704LP4ETR同样得到了广泛应用。例如,在高清电视、数字电视接收机及音频设备中,该芯片被用于信号同步与恢复,保证了音视频信号的无失真传输。随着智能终端的普及,HMC704LP4ETR也在便携设备领域逐渐展现出其潜力,通过低功耗设计,满足了现代消费电子对节能的需求。基本参数HMC704LP4ETR的最大输入频率为8 GHz,工作电压范围为3V至5.2V,工作温度范围为-40℃至+85℃。其工作电源电流为52 mA,封装为QFN-24,采用SiGe BiCMOS工艺制造‌12。技术特点HMC704LP4ETR具有以下技术特点:‌低相位噪声和低杂散性能‌:该器件在8 GHz小数分频下具有-112 dBc/Hz的相位噪声,整数分频模式下品质因数为-230 dBc/Hz‌4。‌高PFD速率‌:高达100 MHz的鉴相频率(PFD)‌4。‌24位小...
  • 点击次数: 10
    2020 - 03 - 24
    混合耦合器(hybrid coupler)是一种四端口器件,其作用是将从任一端口馈入的功率,均等地分配到其他的两个端口,而不将功率传送到第四个端口。定义:当需要的输出比能由单只器件或一对器件得出的还要大的时候,可以用“混合耦合器”电路来合成两个或多个功率放大器。几只器件直接并联运用不能令人满意,因为电流并不是均等地在这些器件中分配的。然而,混合耦合器并不能解决功放可能会遇到的所有问题。例如,假使负载短路或开路,这种效应就反射到每个功放的集电极。负载的电抗和变动同样也会变换到功放去。工作原理:如图所示,是四种类型的混合耦合器:(a)为四边形混合耦合器;(b)为H型带状线耦合器;(c)为环形混合耦合器;(d)为环形带状线耦合器。其工作原理类似于定向耦合器。混合型耦合器把馈入的功率分为两部分,其作用犹如定向的功率分配器。在端口(1)馈入的功率将传输到端口(2)和(3)。通常,力求使耦合器做得能将功率分成两等分。端口(4)是去耦的,在那儿电压分量相互抵消,在该输出端无功率。对于四边形和环形混合耦合器以及H形带状线耦合器,端口(2)和(3)的相位差为  ,而3分贝环形带状线耦合器两个端口间的相位差为  。假设从端口(1)馈入功率,端口(2)、(3)和(4)则接有无反射的特性阻抗。(以上内容整理自网络,如有侵权请联系删除!)各类品牌耦合器器北京永阳微波商城在线有售!
  • 点击次数: 19
    2020 - 03 - 18
    电源管理芯片(Power Management Integrated Circuits),也叫电源管理IC。是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片.主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。电源IC现在的发展趋势已经不局限于单一功能,而是将各种功能整合在一起,所以电源IC目前更多的被称为电源管理IC,或电源管理单元(PMU)。充电装置CMOS Sennor或是等已成为模拟IC业者开始投入的领域, 如何通过更低耗电的设计以减少电力的消耗, 及更轻薄短小和更低价钱已成为厂商努力的方向。电源IC可以说是单价不高, 但责任重大。基本类型:主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装。其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。应用范围:电源管理芯片的应用范围十分广泛,发展电源管理芯片对于提高整机性能具有重要意义,对电源管理芯片的选择与系统的需求直接相关,而数字电源管理芯片的发展还需跨越成本难关。当今世界,人们的生活已是片刻也离不开电子设备。电源管理芯片在电子设备系统中担负起对电能的变换、分配、检测及其它电能管理的职责。电源管理芯片对电子系统而言是不可或缺的,其性能的优劣对整机的性能有着直接的影响。提高性能:所有电子设备都有电源,但是不同的系统对电源的要求不同。为了发挥电子系统的最佳性能,需要选择最适合的电源管理方式。首先,电子设备的核心是半导体芯片。而为了提高电路的密度,芯片的特征尺寸始终朝着减小的趋势发展,电场强度随距离的减小而线性增加,如果电源电压还是原来的...
  • 点击次数: 10
    2019 - 11 - 29
    传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。   传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。(以上内容整理自网络,如有侵权请联系删除!)各类品牌传感器北京永阳微波商城在线有售,欢迎询价
  • 点击次数: 7
    2019 - 11 - 28
    运放,是运算放大器的简称。运算放大器是用模拟电子器件(如晶体管,场效应管,二极管等)构成的模拟集成电路,它的特点是有很高的放大倍数和抗干扰能力,因此可以被设计成各种用途的派生电路,如电压比较器、窗口电路、波形发生电路等等,其中也有【电压跟随器】。电压跟随器是一种具有100%电压负反馈的放大器电路,其特点是输出电压的幅度和极性都与输入电压相同,所以叫跟随器。典型线路如图所示:                                                           运放跟随器有输入阻抗高,而输出阻抗低的特性,一般来说,输入阻抗可以达到几兆欧姆,而输出阻抗低,通常只有几欧姆,甚至更低。  在电路中,电压跟随器一般做缓冲级(buffer)及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器进行缓冲,起到承上启下的作用。电压跟随器还可以提高输入阻抗,可以大幅度减小输入电容的大小,为应用高品质的电容提供保证。各品牌放大器永阳微波商城在线有售
  • 点击次数: 14
    2019 - 11 - 19
    数字电路的时钟信号的来源是哪里呢?主流的设计方案是使用晶振这种外部器件来产生稳定的电流波形。这是性效比最高一个方案,晶振是一块水晶加一些电路的小器材,但是它只需要输入很小的电流就是持续稳定出时钟波形。      这是因为水晶有一个奇特的特性,如果给他通电,他就会产生机械振荡,反之,如果给他机械力,他又会产生电,这种特性叫机电效,这称为压电效应。      更奇妙的是如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器。 其特点是频率稳定度很高,石英表就是使用这个原理制而成.       晶片会产一个稳定的波形,只要持续的供电,这种电能-机械能-电能转换会让波形不断生成. 在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。石英晶体具有高品质因数,振荡电路采用了恒温、 稳压等方式以后,振荡频率稳定度可以达到 10^(-9)至 10^(-11)。广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合 。      数字电路中重要器件晶振就是使用这一原理制作而成. 晶振是石英晶体谐振器和石英体时钟振荡器的统称。不过由于在消费类电子产品中,谐振器用的更多,所以一般的概念把晶振就等同于谐振器理解了。后者就是通常所指钟振。      它是一种机电器件,是用电损耗很小的石英晶体经精密切割磨削并镀上电极焊上引线做成。      晶振在数字电路的作用就是供一个...
  • 点击次数: 8
    2019 - 11 - 14
    频率合成技术起源于20世纪30年代,至今已有70多年的历史。     频率合成器是利用一个或多个基准频率,通过各种技术途径产生一系列的离散频率信号的设备。这些频率的稳定度和精度均和基准频率相同,而且频率的转换时间很短,这样才会有效率和实用价值。  频率合成器的实现方法有3种:直接模拟频率合成、间接频率合成和直接数字频率合成。    频率合成器作用是给微波扫频信号提供一定分辨力的频率参考信号,并对微波信号输出频率进行逐点锁定,以得到高准确度和稳定度的扫频输出信号。输出点频信号和扫频信号是微波合成扫源的基本功能,而点频输出又是扫频输出的基础(扫频信号的输出可以利用点频通过程序控制的方法实现)。  频率合成源是微波系统的重要功能单元,在收发信机、雷达探测、通信、检测仪器等电子设备中被广泛使用。       (以上内容整理自网络,如有侵权请联系删除!)
  • 点击次数: 9
    2019 - 11 - 08
    分频器通常用来对某个给定的时钟频率进行分频,以得到所需的时钟频率。在设计数字电路中会经常用到多种不同频率的时钟脉冲,一般采用由一个固定的晶振时钟频率来产生所需要的不同频率的时钟脉冲的方法进行时钟分频。      在FPGA的设计中分频器是使用频率较高的基本设计,在很多的设计中也会经常用到芯片集成的锁相环资源,如用Xilinx的DLL以及Altera的PLL来进行时钟的分频、倍频与相移。在一些对时钟精度不高的场合,会经常利用硬件描述语言来对时钟源进行时钟分频。       分频器是一种基本电路,一般包括数字分频器、模拟分频器和射频分频器。根据不同设计的需要,有时还会要求等占空比。数字分频器采用的是计数器的原理,权值为分频系数。模拟分频器就是一个频率分配器,用带阻带通实现(比如音箱上高中低喇叭的分配器)。射频分频器也是滤波器原理,用带内外衰减,阻抗匹配实现。       随着FPGA技术的发展,基于FPGA技术的硬件设计数字分频器已成为数字系统设计的研究重点。数字分频器通常分为整数分频器和小数分频器。在有些需求下还要分数分频器。      本设计是基于FPGA的数字分频器,通过VHDL硬件设计语言,在Modelsim6.5上对设计的分频器进行仿真验证。       数字分频器的设计       数字分频器的设计与模拟分频器的设计不同,数字分频器可以使用触发器设计电路对时钟脉冲进行时钟分频。分频器的一个重要指标就是占空比,即在一个周期中高电平脉冲在整个周期中所占的比例。占空比一般会有1:1,1: N等不同比例的要求,由于占空比的比例要求不一样,所以采用的...
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

5

电话号码管理

  • 010-62968679 010-62968679
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开