

TS84230K – 20 W GaN Broadband RF Switch SPDT, charge pump disabled.

1.0 Features

- Low insertion loss: 0.2dB @ 800MHz
- High isolation: 45dB @ 800MHz
- High CW power handling capability 20 W
- No external DC blocking capacitors on RF lines
- All RF ports OFF state
- Versatile 2.6-5.25V power supply
- Operating frequency: 30MHz to 6.0GHz
- Internal charge pump disabled for Low noise application

Figure 1 Device Image
(16 Pin 3x3x0.8mm QFN Package)

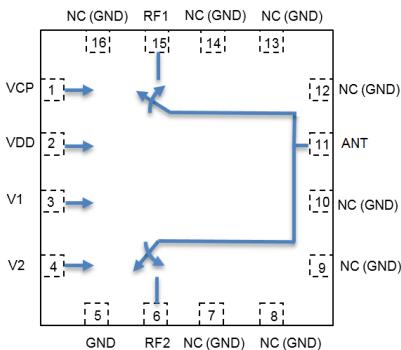
2.0 Applications

- Private mobile radio handsets
- Public safety handsets
- Cellular infrastructure
- Small cells (3x3mm QFN package)
- LTE relays and microcells
- Satellite terminals

RoHS/REACH/Halogen Free Compliance

3.0 Description

The TS84230K is a symmetrical reflective Single Pole Dual Throw (SPDT) switch designed for broadband, high peak power switching applications. Its broadband behavior from 30MHz to 6.0GHz frequencies makes the TS84230K an excellent switch for all applications requiring low insertion loss, high isolation, and high linearity within a small package size. This part has the internal charge pump disabled to eliminate the charge pump spurs. A -18V supply is needed on the VCP pin.


The TS84230K is packaged into a compact Quad Flat No lead (QFN) 3x3mm 16 leads plastic package.

4.0 Ordering Information

Table 1a Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number
TS84230K	16 Pin 3x3x0.8mm QFN	Tape and Reel	3000	13" (330mm)	18mm	TS84230KMTRPBF
Evaluation Board						TS84230K-EVB

Note: MTRPBF - M for Manufacturing, TR : Tape and Reel (TR) and PBF : lead free (PB F).

Figure 2 Function Block Diagram
(Top View)

5.0 Pin Description

Table 2 Pin Definition

Pin Number	Pin Name	Description
1	VCP	Internal charge pump is disabled. -18V supply is needed on the VCP pin.
2	VDD	DC power supply
3	V1	Switch control input 1
4	V2	Switch control input 2
6	RF2	RF port 2
5,7,8,9,10,12,13,14,16	NC	No internal connection, can be grounded
11	ANT	Antenna port
15	RF1	RF port 1

Note: The backside ground (thermal) pad of the package must be grounded directly to the ground plane of PCB with multiple vias to ensure proper operation and thermal management.

6.0 Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings @ $T_A=+25^\circ\text{C}$ Unless Otherwise Specified

Parameter	Symbol	Value	Unit
Electrical Ratings			
Power Supply Voltage	VDD	5.5	V
Storage Temperature Range	T_{st}	-55 to +125	$^\circ\text{C}$
Operating Temperature Range	T_{op}	-40 to +85	$^\circ\text{C}$
Maximum Junction Temperature	T_J	+140	$^\circ\text{C}$
Maximum RF input power	RFx/ANT	43	dBm
Thermal Ratings			
Thermal Resistance (junction-to-case) – Bottom side	$R_{\theta JC}$	25	$^\circ\text{C}/\text{W}$
Thermal Resistance (junction-to-top)	$R_{\theta JT}$	39	$^\circ\text{C}/\text{W}$
Soldering Temperature	T_{SOLD}	260	$^\circ\text{C}$
ESD Ratings			
Human Body Model (HBM)	Level 1B	500 to <1000	V
Charged Device Model (CDM)	Level C3	≥ 1000	V
Moisture Rating			
Moisture Sensitivity Level	MSL	1	-

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Electrical Specifications

Table 4 Electrical Specifications @ $T_A=+25^\circ\text{C}$ Unless Otherwise Specified; $VDD=+3.3\text{V}$; 50Ω Source/Load.

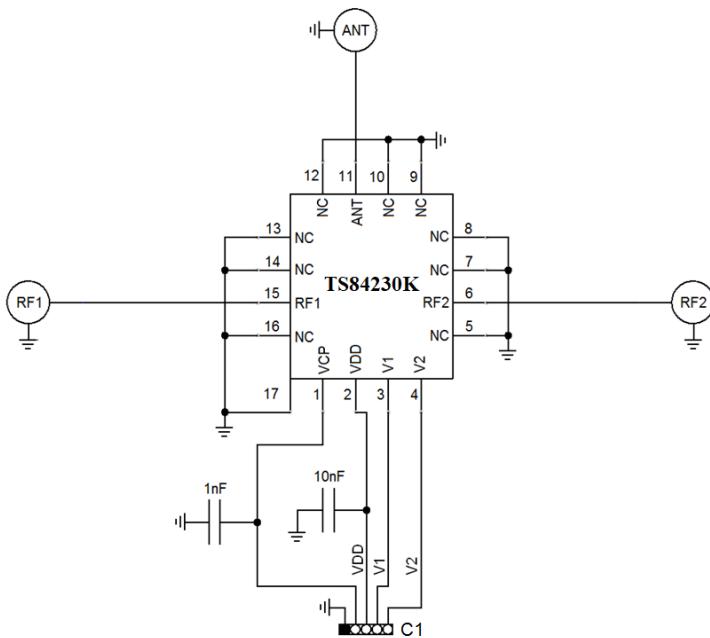
Parameter	Condition	Minimum	Typical	Maximum	Unit
Operating Frequency		30		6000	MHz
Insertion Loss, RFx	400MHz		0.15		dB
	800MHz		0.17	0.30	
	1.95GHz		0.24		
	2.6GHz		0.26		
	6.0GHz (matched)		0.59		
Isolation ANT-RFx	400MHz		54		dB
	800MHz	42	46		
	1.95GHz		35		
	2.6GHz		30		
	6.0GHz (matched)		19		
Return Loss ANT-RFx	400MHz		35		dB
	800MHz		32		
	1.95GHz		25		
	2.6GHz		24		
	6.0GHz (matched)		18		
H2	CW, 800MHz, Pin=40dBm		-92		dBc
H3	CW, 800MHz, Pin=40dBm		-95		dBc
IIP3	800MHz		77		dBm
P0.1dB ^[1]	800MHz, 1% duty cycle, 1mS period	45	48		dBm
	800MHz, CW	43	45		dBm
Switching Time	50% ctrl to 10/90% of the RF value is settled.		0.9		μs
VCP	Iload of 10uA	-19	-18	-17	V
VCP Sourcing Current	Sourcing current of external VCP supply	100			uA
Control Voltage	Power supply VDD	2.6	3.3	5.25	V
	All control pins high, V_{ih}	1.0	3.3	5.25	V
	All control pins low, V_{il}	-0.3		0.5	V
Control Current	All control pins low, I_{il}		0		μA
	All control pins high, I_{ih}			7.5	μA
Current Consumption, IDD	Active mode		50	75	μA

Note:

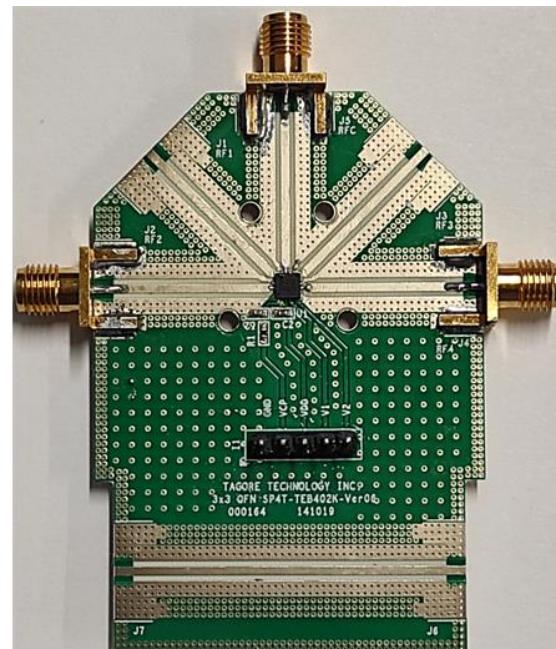
[1] P0.1dB, input 0.1 dB compression point, is a figure of merit.

[2] No external DC blocking capacitors required on RF pins unless DC voltage is applied on a RF pin.

8.0 Switch Truth Table


Table 5 Switch Truth Table

V1	V2	Active RF Path
0	1	All OFF
0	0	ANT-RF1
1	0	ANT-RF2


Attention:

- [1] VDD should be applied first before V1 and V2, otherwise may cause damage to the device.
- [2] There are internal pull-downs to ground on both V1 and V2 control pins, the state at start-up without any control voltage applied will be ANT-RF1 ON.
- [3] If all OFF state is not used, the switch can be operated with single control pin V1.

9.0 Evaluation Board

Figure 3 Evaluation Board Schematic

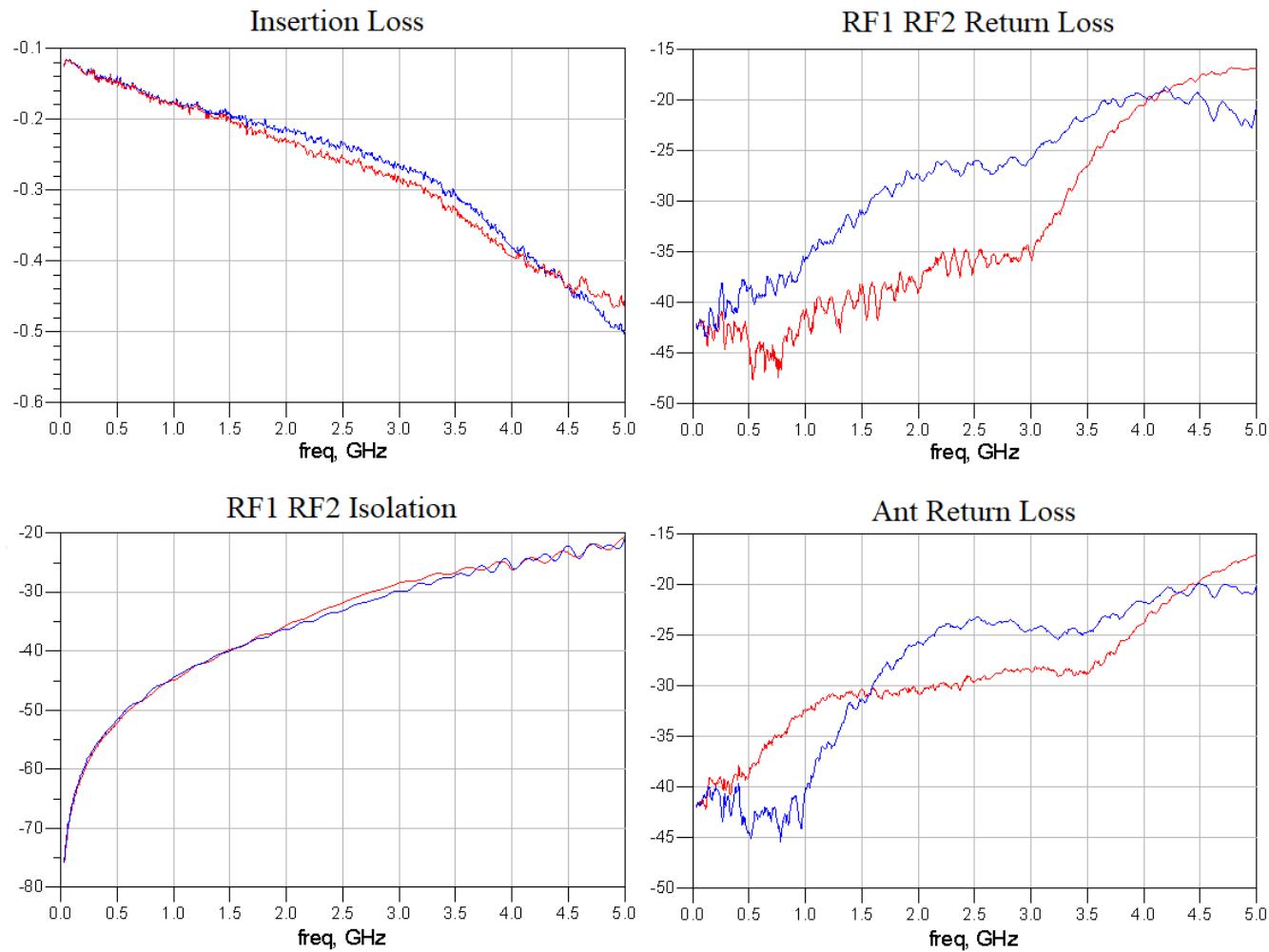
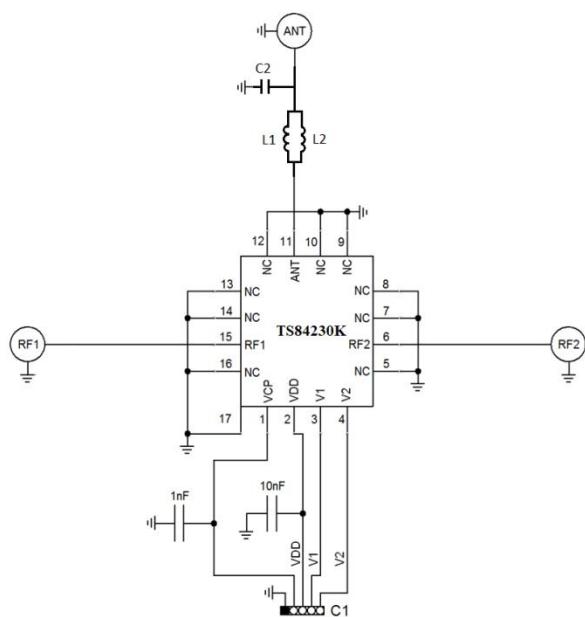
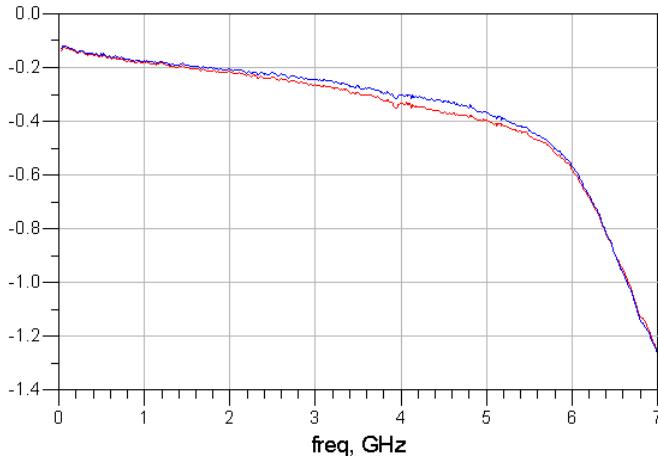
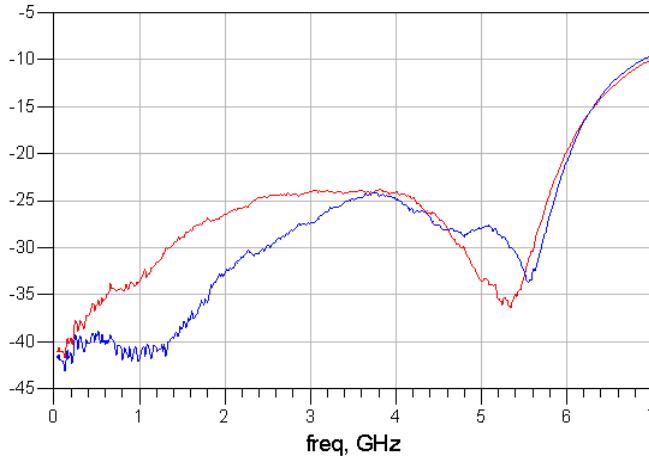
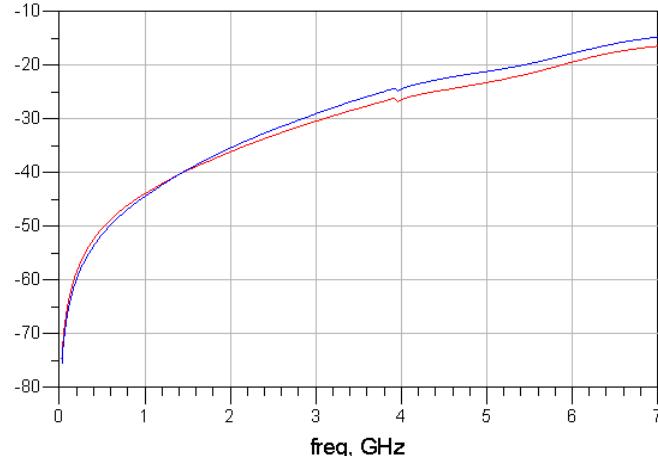
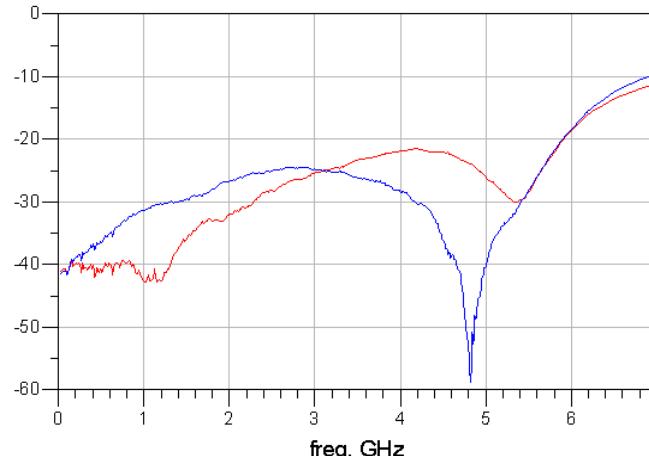


Figure 4 Evaluation Board Image


Attention:

- [1] 17 refers to the center pad of the device.





10.0 Typical Characteristics

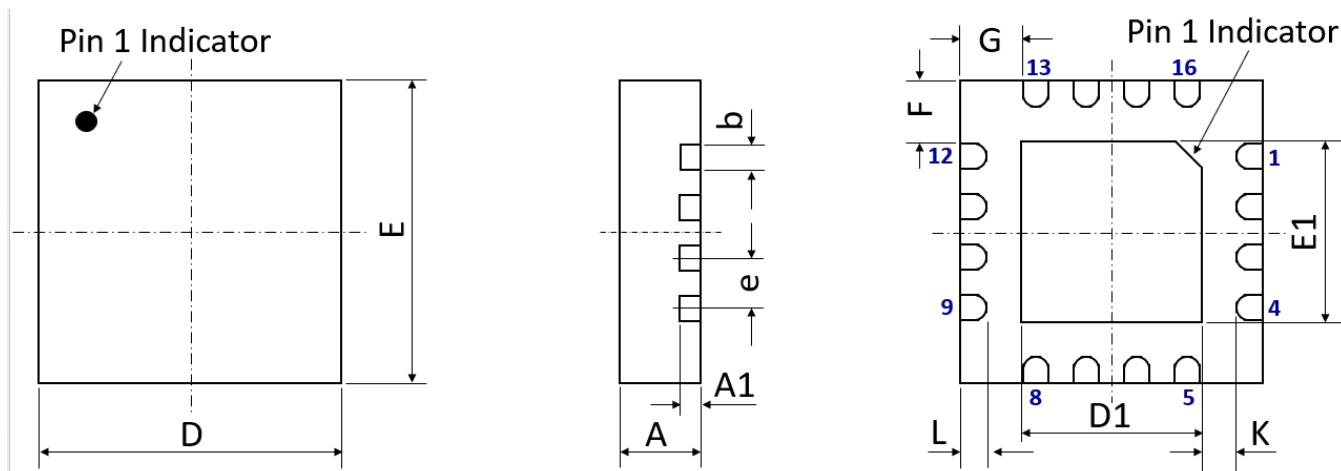


Figure 5 Evaluation Board Typical Characteristics (no match)

Ref	Value	Part#	Manufacturer
C2	0.2pF	0603N0R2BW251	PPI
L1	0.8nH	0402DC-N80XJRU	Coilcraft
L2	0.8nH	0402DC-N80XJRU	Coilcraft

Insertion Loss

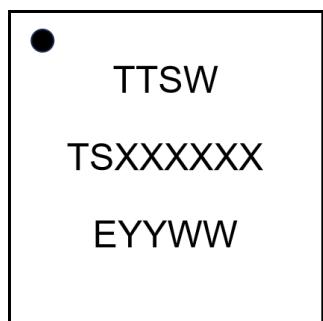
RF1 RF2 Return Loss

RF1 RF2 Isolation

Ant Return Loss

Figure 7 Evaluation Board Typical Characteristics (matched)
11.0 Device Package Information

Figure 8 Device Package Drawing
(All dimensions are in mm)

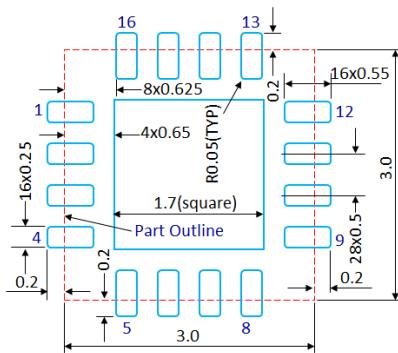

Table 6 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A	0.80	± 0.05	E	3.00 BSC	± 0.05
A1	0.203	± 0.02	E1	1.70	± 0.05
b	0.25	+0.05/-0.07	F	0.625	± 0.05
D	3.00 BSC	± 0.05	G	0.625	± 0.05
D1	1.70	± 0.05	L	0.25	± 0.05
e	0.50 BSC	± 0.05	K	0.40	± 0.05

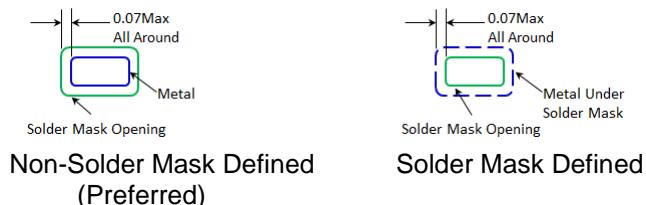
Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5 μ m ~ 20 μ m (Typical 10 μ m ~ 12 μ m)

Attention:

Please refer to application notes [TN-001](#) and [TN-002](#) at <http://www.tagoretech.com> for PCB and soldering related guidelines.


Top-marking specification:

- = Pin 1 indicator
- TTSW = Tagore Technology SWitch
- TSXXXXXX = Part number (8 digits max)
- E = A fixed letter before the date code
- YY = Last two digits of assembly year
- WW = Assembly work week


12.0 PCB Land Design

Guidelines:

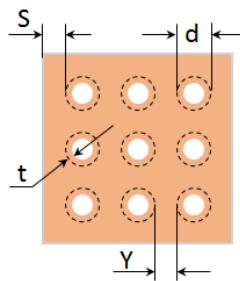

- [1] 4 layer PCB is recommended.
- [2] Via diameter is recommended to be 0.2mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall only be placed on the center pad.
- [4] The maximum via number for the center pad is $3(X) \times 3(Y) = 9$.

Figure 9 PCB Land Pattern
(Dimensions are in mm)

Figure 10 Solder Mask Pattern
(Dimensions are in mm)

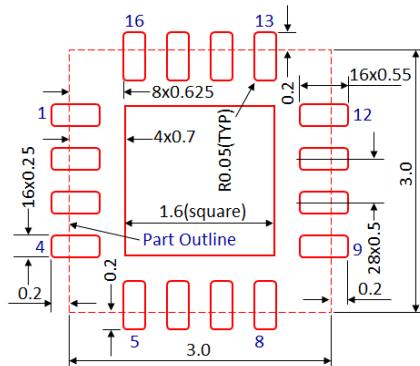
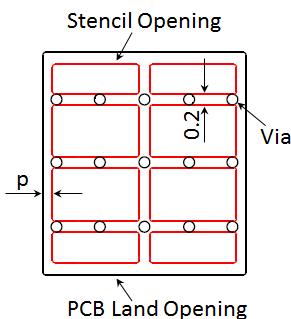


Figure 11 Thermal Via Pattern
(Recommended Values: $S \geq 0.15\text{mm}$; $Y \geq 0.20\text{mm}$; $d = 0.2\text{mm}$; Plating Thickness $t = 25\mu\text{m}$ or $50\mu\text{m}$)


13.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125 μ m.

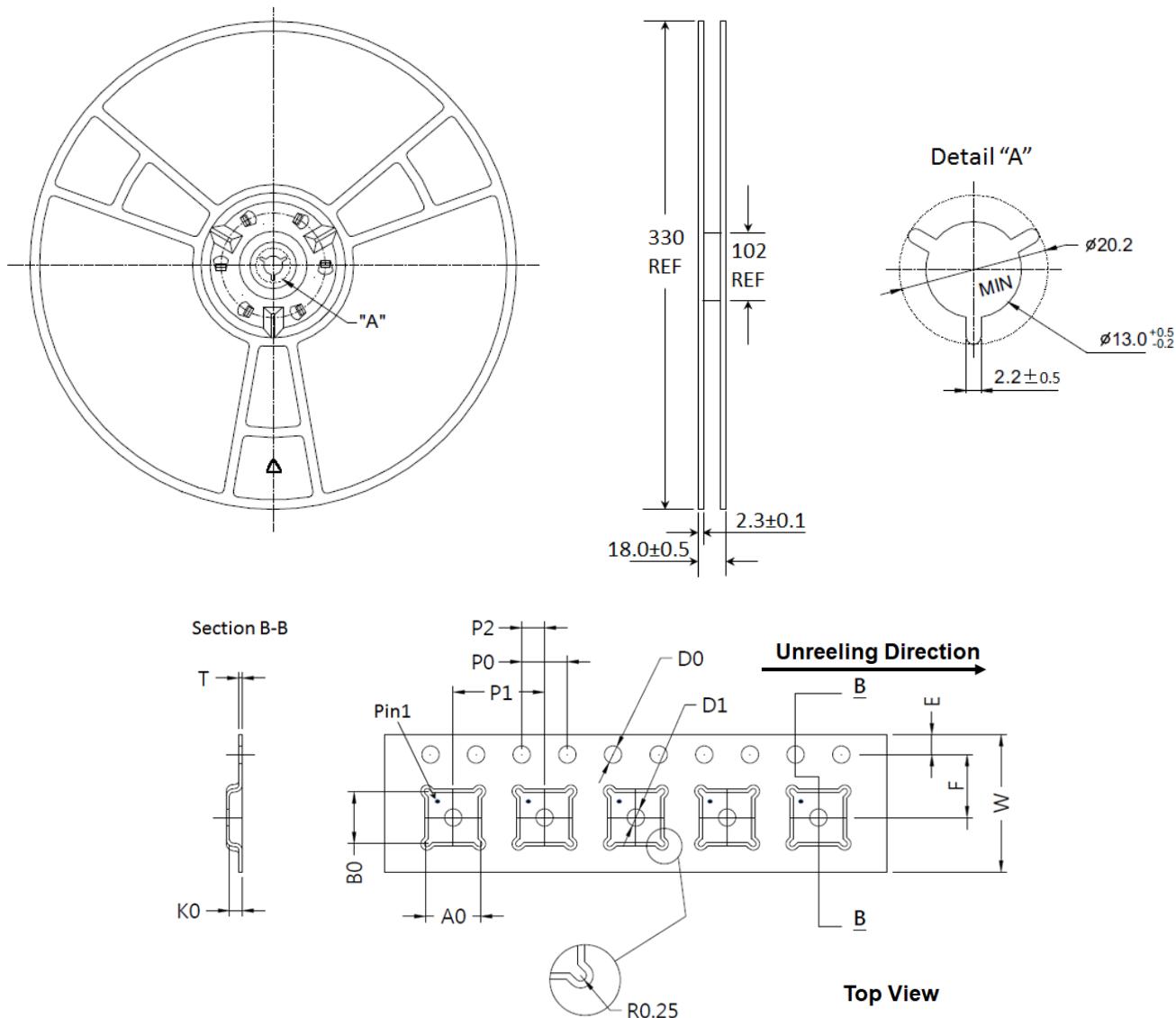


Figure 12 Stencil Openings
(Dimensions are in mm)

Figure 13 Stencil Openings Shall not Cover Via Areas If Possible
(Dimensions are in mm)

14.0 Tape and Reel Information

Figure 14 Tape and Reel Drawing

Table 7 Tape and Reel Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A0	3.35	±0.10	K0	1.10	±0.10
B0	3.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
E	1.75	±0.10	T	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Edition Revision 2.0 - 2024-09-05

Published by

TagoreTech Inc.
601 Campus Drive, Suite C1
Arlington Heights, IL 60004, USA

©2018 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. TagoreTech assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of TagoreTech. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact TagoreTech: support@tagoretech.com.