

TS86246P - SPDT 200W Average Power Switch HF Band 1 - 1000 MHz

1.0 Features

- Low insertion loss: 0.08dB @ 1 MHz
- High isolation: 58 dB @ 1 MHz, 49 dB @ 30 MHz
- 200W CW Power
- No external DC blocking capacitors on RF lines
- All RF ports OFF state
- Versatile 2.6-5.25V power supply
- Operating frequency: 1 MHz to 1000 MHz

Figure 1 Device Image (48 Pin 7×7×0.85mm QFN Package)

2.0 Applications

- Private mobile and Tactical HF Radios
- Public safety HF handsets
- Ham Radios
- MRI Machine
- Mechanical Relay replacement
- HF Antenna Tuning

3.0 Description

The TS86246P is a 2nd Generation symmetrical reflective Single Pole Dual Throw (SPDT) switch designed for high power switching applications. The TS86246P covers 1MHz to 600MHz bandwidth and provides low insertion loss, high isolation, and high linearity within a small package size. The TS86246P is a 200W-CW switch suitable for applications requiring low insertion loss, high isolation, and high linearity.

The TS86246P is packaged into a compact Quad Flat No lead (QFN) 7x7mm 48 leads plastic package.

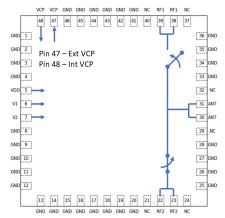


Figure 2 Function Block Diagram (Top View)

4.0 Ordering Information

Table 1a Ordering Information

Device Part Number	Package Type	Eval Board Part Number
TS86246P	48 Pin 7×7×0.85mm QFN	TS86246P-EVB

Table 1b Tape and Reel Information

Form	Form Quantity		Reel Width
Tape and Reel	3,000	13" (330mm)	18mm

5.0 Pin Description

Table 2 Pin Definition

Pin Number	Pin Name	Description
47,48	VCP	Short pins 47 and 48. Connect a 1nFcapacitor to GND on this node to improve switching time.
5	VDD	DC power supply
6	V1	Switch control input 1
7	V2	Switch control input 2
1,2,3,4,8,9,10,11,12,13,14,15, 16,17,18,19,20,25,26,27,28, 33,34,35,36,41,42,43,44,45,46	NC	No internal connection, can be grounded
21,24,29,32,37,40	NC	No internal connection. Do not connect to ground
22,23	RF2	RF port 2
30,31	ANT	Antenna port
38,39	RF1	RF port 1
49	GND	Ground thermal pad

Note: The backside ground (thermal) pad of the package must be grounded directly to the ground plane of PCB with multiple vias, and adequate heat sinking must be used to ensure proper operation and thermal management.

6.0 Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings @TA=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit		
Electrical Ratings					
Power Supply Voltage	VDD	5.5	V		
Storage Temperature Range	T _{st}	-55 to +125	Ô		
Operating Temperature Range	Top	-40 to +85	°C		
Maximum Junction Temperature	TJ	+140	Ô		
Maximum RF input power (30MHz, VSWR 8:1).	RFx/ANT	TBD	dBm		
Maximum RF input Peak Voltage (30MHz, VSWR 8:1).	RFx/ANT	160	V		

Thermal Ratings						
Thermal Resistance (junction-to-case) – Bottom side	R _{eJC}	2	°C/W			
Thermal Resistance (junction-to-top)	Rejt	30	°C/W			
Soldering Temperature	T _{SOLD}	260	°C			
ESD Rating	gs					
Human Body Model (HBM)	Level 1B	500 to <1000	V			
Charged Device Model (CDM)	Level C3	≥1000	V			
Moisture Rating						
Moisture Sensitivity Level	MSL	1	-			

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Electrical Specifications

Table 4 Electrical Specifications $@T_A = +25^{\circ}C$ Unless Otherwise Specified; VDD=+3.3V; 50Ω Source/Load.

Parameter	Condition	Minimum		Maximum	Unit	
Operating frequency		1		1000	MHz	
	1 MHz		0.07	0.09		
Insertion loss, RFx	30 MHz		0.08	0.1	dB	
IIISEIIIOII 1055, KFX	200 MHz		0.1	0.12	uБ	
	600 MHz (Matched)		0.16			
	1 MHz		62			
Isolation ANT-RFx	30 MHz		49		40	
ISOIAIION AINT-REX	200 MHz		32		dB	
	600 MHz (Matched)		23			
	1 MHz		42			
Return loss ANT,	30 MHz		40		-10	
RFx	200 MHz		30		dB	
	600 MHz (Matched)		32			
Harmonic distortion						
H2	2MHz, Pin=50dBm		TBD		dBc	
H3	2MHz, Pin=50dBm		TBD		dBc	
H2	30MHz, Pin=50dBm		93		dBc	
H3	30MHz, Pin=50dBm		94		dBc	
P0.1dB ^[1]	2MHz, CW		52		dBm	
P0.1dB ^[1]	30MHz, CW		54		dBm	
Peak P0.1dB ^[1]	30MHz, 1% duty cycle, 1 ms period, Internal CP Voltage		55.3		dBm	
CP switching Noise	Internal CP, RBW = 1KHz		-140		dBm	
Switching time	50% ctrl to 10/90% of the RF value is settled. CP=1nF to ground on VCP pin.		72	93	μS	
EXT VCP	External VCP voltage	-19.5	-20	-20.5	V	
	Power Supply VDD	2.6	3.3	5.25	V	
Control voltage	All control pins high, Vih	1.0	3.3	5.25	V	
	All control pins low, Vil	-0.3		0.5	V	
Ozietnel zwineni	All control pins low, Iii		0		μΑ	
Control current	All control pins high, Iih			7.5	μA	
Current consumption, IDD	Active mode (VDD on)		160	260	μ A	

Note:

^[1] P0.1dB is a figure of merit.

^[2] No external DC blocking capacitors required on RF pins unless DC voltage is applied on a RF pin.

8.0 Switch Truth Table

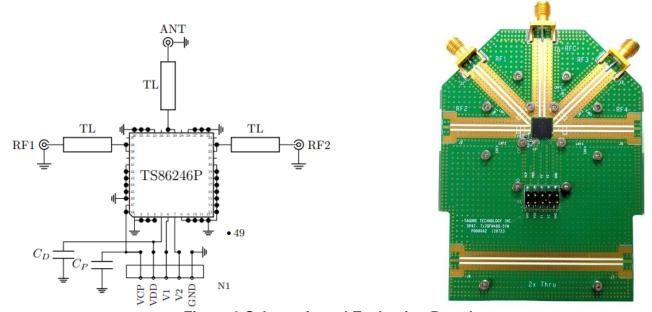
Table 5 Switch Truth Table

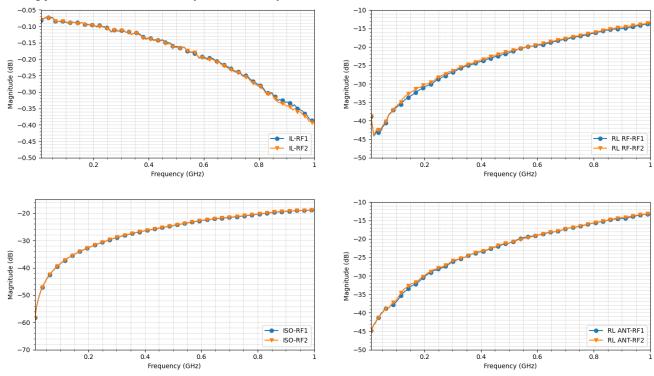
V1	V2	Active RF Path	
0	1	All OFF	
0	0	ANT-RF1 ON	
1	0	ANT-RF2 ON	

Attention:

- [1] VDD should be applied first before V1 and V2, otherwise may cause damage to the device.
- [2] There are internal pull-downs to ground on both V1 and V2 control pins, the state at start-up without any control voltage applied will be ANT-RF1 ON.
- [3] If all OFF state is not used, the switch can be operated with single control pin V1.

9.0 Schematic and Evaluation Board




Figure 3 Schematic and Evaluation Board

Attention:

- [1] 49 refers to the center pad of the device. Multiple Plugged through hole vias should be added on this Ground Pad and adequate heat sinking should be used.
- [2] The purpose of connection between VCP and connector N1 is to monitor VCP, do not apply external voltage to VCP.
- [3] Place matching components close to pin of the part.

10.1 Typical Characteristics (Unmatched)

10.2 Typical Characteristics (10 MHz - 1000 MHz)

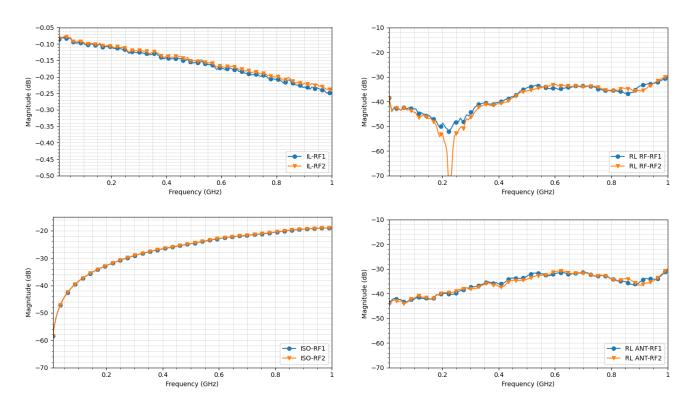


Table 6.1 Bill of Materials - (Unmatched)

Component	Part Number	Description	Notes
C _P	GRM155R71H102KA01D	Ceramic capacitor, 1 nF, 50 V, ±10%.	
C _D	GRM155R71H103KA88	Ceramic capacitor, 10 nF, 50 V, ±15%.	

^{*} For additional details, please contact the Tagore Technology support team.

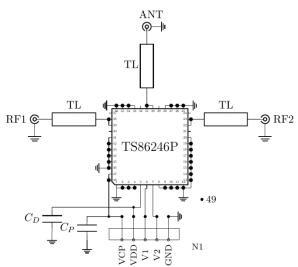


Figure 4a. Bill of Materials for unmatched condition.

Table 6.2 Bill of Materials - Matched (10 MHz - 1000 MHz)

Component Part Number		Description	Notes
C_P	GRM155R71H102KA01D	Ceramic capacitor, 1 nF, 50 V, ±10%.	
C _D	GRM155R71H103KA88	Ceramic capacitor, 10 nF, 50 V, ±15%.	
L _{0a}	0603DC-6N8X_RW	Ceramic core chip inductor, 6.8 nH, ± 5%.	
C _{0a}	0603N1R6BW251 Ceramic capacitor, 1.6 pF, 250V, ± 0.1pF.		
T _{0a}	1 mm	PCB transmission line length.	From the IC-reference plane.

^{*} For additional details, please contact the Tagore Technology support team.

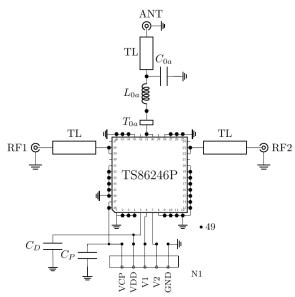


Figure 4b. Bill of Materials for 10 MHz – 1000 MHz matching network.

11.0 Device Package Information

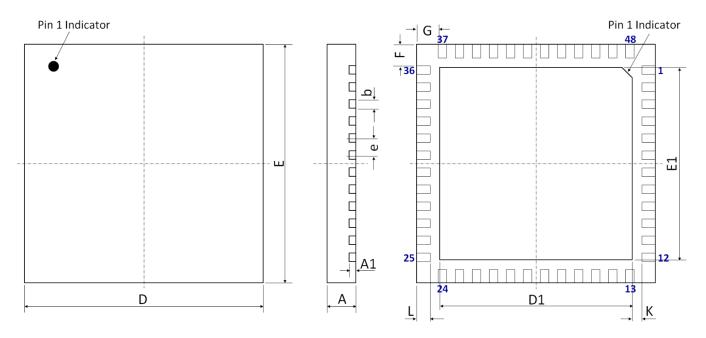


Figure 5 Device Package Drawing

(All dimensions are in mm)

Table 7 Device Package Dimensions

Dimension	Value (mm)	Tolerance (mm)	Dimension	Value (mm)	Tolerance (mm)
Α	0.85	±0.05	Е	7.00 BSC	±0.05
A1	0.203	±0.02	E1	5.65	±0.06
b	0.25	+0.05/-0.07	F	0.625	±0.05
D	7.00 BSC	±0.05	G	0.625	±0.05
D1	5.65	±0.06	L	0.40	±0.05
е	0.50 BSC	±0.05	K	0.275	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5μm ~ 20μm (Typical 10μm ~ 12μm)

Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

Top Marking Specifications:

= Pin 1 indicator

TTSW = Tagore Technology SWitch

TSXXXXXX = Part number (8 digits max)

E = A fixed letter before the date code

YY = Last two digits of assembly year

WW = Assembly work week

12.0 PCB Land Design

Guidelines:

- [1] 4-layer PCB is recommended.
- [2] Via diameter is recommended to be 0.3mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall only be placed on the center pad.
- [4] The maximum via number for the center pad is $11(X)\times11(Y)=121$.

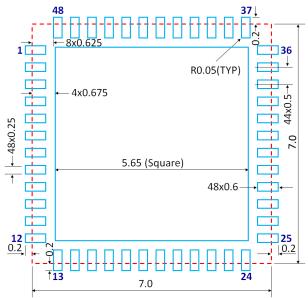


Figure 6 PCB Land Pattern (Dimensions are in mm)

(Preferred)

Figure 7 Solder Mask Pattern

(Dimensions are in mm)

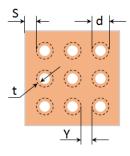


Figure 8 Thermal Via Pattern

(Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.3mm; Plating Thickness t=25µm or 50µm)

13.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125µm.

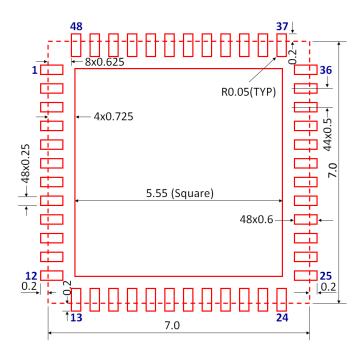


Figure 9 Stencil Openings (Dimensions are in mm)

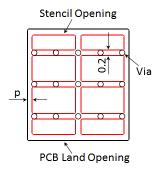
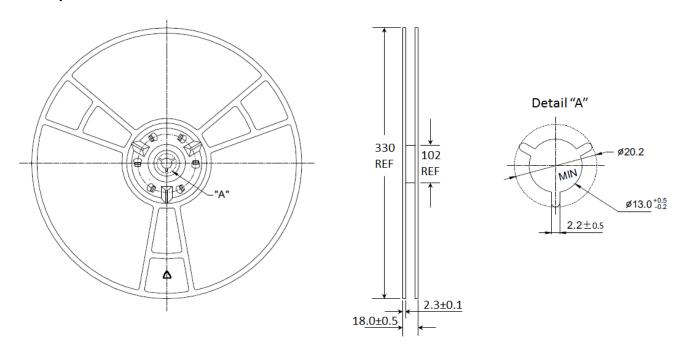



Figure 10 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

14.0 Tape and Reel Information

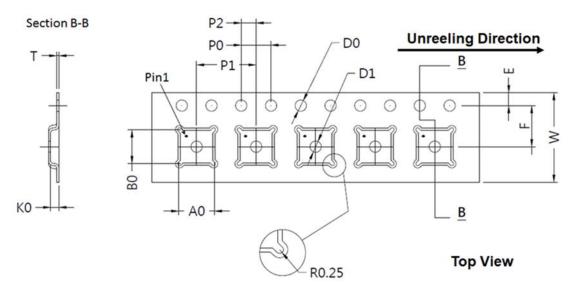


Figure 11 Tape and Reel Drawing

Table 8 Tape and Reel Dimensions

Dimension	Value (mm)	Tolerance (mm)	Dimension	Value (mm)	Tolerance (mm)
A0	7.35	±0.10	K0	1.10	±0.10
B0	7.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
E	1.75	±0.10	Т	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Edition Revision 2.0 - 2024-09-10

Published by

TagoreTech Inc. 601 Campus Drive, Suite C1 Arlington Heights, IL 60004, USA

©2018 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. TagoreTech assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of TagoreTech. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact TagoreTech: support@tagoretech.com.