

# CC2564C 双模 *Bluetooth*<sup>®</sup> 控制器

## 1 器件概述

### 1.1 特性

- TI 的单片 *蓝牙*<sup>®</sup>解决方案支持蓝牙基本速率 (BR)、增强型数据速率 (EDR) 以及低功耗 (LE)；提供两种型号：
- 符合标准的蓝牙 4.2 组件 (声明 ID: D032801)；最高可兼容 HCI 层
- 针对尺寸受限和低成本设计进行了高度优化：
  - 单端 50Ω 射频 (RF) 接口
  - 封装尺寸: 76 引脚, 间距为 0.6 mm, 8mmx8mm (VQFN-P-MR)
- BR 和 EDR 特性包括：
  - 最多可支持七个有源器件
  - 散射网：支持多达三个微微网同时运行，其中一个作为主网络，另外两个作为从网络
  - 同一微微网中支持多达两条同步面向连接 (SCO) 链路
  - 支持所有语音空中编码 - 连续可变斜率增量 (CVSD) 编码、A 律编码、μ 律编码、改良型子带编码 (mSBC) 以及透明编码 (未编码)
  - 为 HFP 1.6 宽带语音配置文件 (WBS) 或 A2DP 配置文件提供辅助模式，旨在降低主机处理负荷和功耗
  - 以增强的 QoS 支持多种蓝牙配置文件
- 低耗能特性包括：
  - 多种嗅探实例紧密结合，最大程度降低功耗
  - 针对低功耗模型进行独立缓冲，允许大量实施多种不同连接，同时不影响 BR 或 EDR 性能
  - 适用于 BR、EDR 和低功耗模式的内置共存和优

### 1.2 应用

- 无线音频解决方案
- mPOS
- 医疗设备
- 机顶盒 (STB)

### 1.3 说明

TI CC2564C 器件是一款完备的 *Bluetooth*<sup>®</sup> BR、EDR 和低功耗 HCI 解决方案，能够降低设计工作量并缩短上市时间。基于 TI 第七代蓝牙核心，CC2564C 器件提供久经验证的解决方案，符合蓝牙 4.2 标准。当与 [微控制器单元 \(MCU\)](#) 结合使用时，该 HCI 器件可提供最佳 RF 性能，射频范围约为其他蓝牙低功耗解决方案的两倍。此外，TI 的电源管理硬件和软件算法可显著降低所有常用蓝牙 BR、EDR 和低功耗运行模式的功耗。

TI 双模蓝牙协议栈软件经认证并免收版税，适用于 MCU 和 MPU。iPod (Mfi) 协议由<sup>®</sup>附加软件包提供支持。有关详细信息，请参见 [TI 双模蓝牙协议栈](#)。支持多种配置文件和示例应用，包括以下内容：

- 串行端口配置 (SPP)
- 高级音频分配配置 (A2DP)

- 先级处理
- 链路层拓扑散射网功能 - 可以同时作为外围设备和中央设备
- 最多支持 10 个器件的网络
- 最大程度提升通道利用率的时间线优化算法
- 最佳蓝牙 (RF) 性能 (TX 功率、RX 灵敏度、阻断)
  - 第一类 TX 功率高达 +12dBm
  - 内部温度检测和补偿，确保 RF 性能在温度范围内变化最小，无需使用外部校准
  - 适应时间最短的改进型自适应跳频 (AFH) 算法
  - 范围更大，涵盖其他仅提供低功耗模式的解决方案范围的二倍
- 延长电池寿命并简化设计的高级电源管理
  - 片上电源管理，包括直接连接电池
  - 激活、待机和扫描蓝牙模式的功耗较低
  - 可最大程度降低功耗的关断和休眠模式
- 物理接口：
  - 支持最高蓝牙数据速率的 UART 接口
    - 最高速率为 4Mbps 的 UART 传输层 (H4)
    - 最高速率为 4Mbps 的三线制 UART 传输层 (H5)
  - 完全可编程数字脉冲编码调制 (PCM) - 集成电路内置音频总线 (I2S) 编解码器接口
- 支持在 MCU 和 MPU
- CC256x 蓝牙硬件评估工具：评估器件 RF 性能并配置服务包的 PC 应用程序

- 穿戴式设备
- 传感器集线器，传感器网关
  - 家庭与工厂自动化



An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

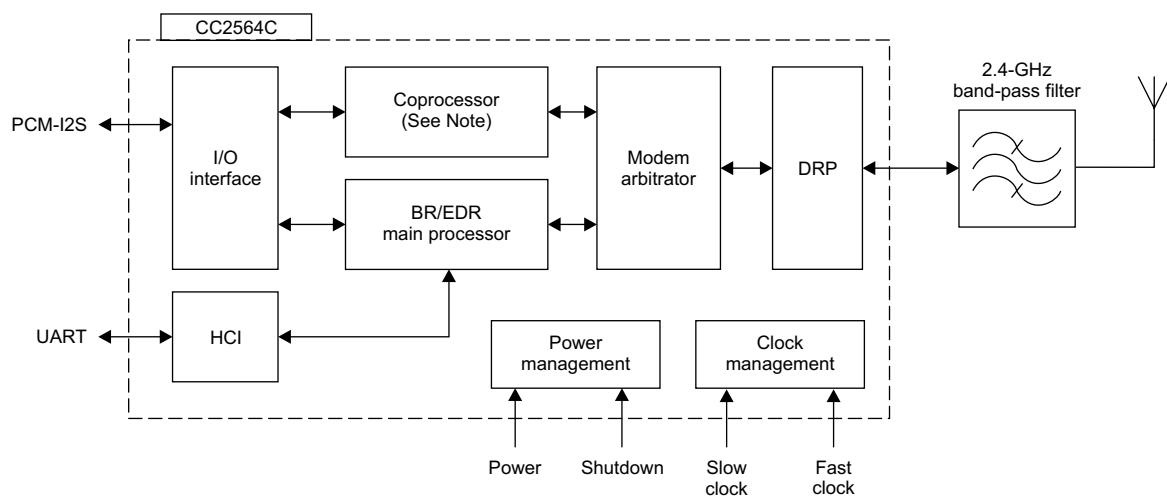
音频/视频远程控制配置文件 (AVRCP)

免提配置文件 (HFP)

人机界面设备 (HID)

通用属性配置文件 (GATT)

多种蓝牙低功耗配置文件和服务


#### 器件信息<sup>(1)</sup>

| 产品型号       | 封装       | 封装尺寸                     |
|------------|----------|--------------------------|
| CC2564CRVM | RVM (76) | 8.00mm × 8.00mm × 0.60mm |

(1) 有关此类器件的详细信息, 请参见 [节 9](#)。

)

## 1.4 功能框图



Note: 以下技术和辅助模式无法与协处理器同时使用: 蓝牙低功耗、HFP 1.6 (WBS) 辅助模式以及 A2DP 辅助模式每次仅可使用一种技术或辅助模式。

图 1-1. 功能框图

## 内容

|          |                                                                 |           |          |                                                                        |           |
|----------|-----------------------------------------------------------------|-----------|----------|------------------------------------------------------------------------|-----------|
| <b>1</b> | <b>器件概述</b>                                                     | <b>1</b>  | 6.1      | Overview                                                               | <b>23</b> |
| 1.1      | 特性                                                              | 1         | 6.2      | Functional Block Diagram                                               | <b>23</b> |
| 1.2      | 应用                                                              | 1         | 6.3      | Clock Inputs                                                           | <b>23</b> |
| 1.3      | 说明                                                              | 1         | 6.4      | Functional Blocks                                                      | <b>27</b> |
| 1.4      | 功能框图                                                            | 2         | 6.5      | Bluetooth BR and EDR Features                                          | <b>38</b> |
| <b>2</b> | <b>修订历史记录</b>                                                   | <b>3</b>  | 6.6      | Bluetooth low energy Description                                       | <b>39</b> |
| <b>3</b> | <b>Device Comparison</b>                                        | <b>4</b>  | 6.7      | Bluetooth Transport Layers                                             | <b>40</b> |
| 3.1      | Related Products                                                | 4         | 6.8      | Changes from the CC2564B Device to the<br>CC2564C Device               | <b>40</b> |
| <b>4</b> | <b>Terminal Configuration and Functions</b>                     | <b>5</b>  | <b>7</b> | <b>Applications, Implementation, and Layout</b>                        | <b>41</b> |
| 4.1      | VQFN-MR Pin Diagram                                             | 5         | 7.1      | Reference Design Schematics and BOM for Power<br>and Radio Connections | <b>41</b> |
| <b>5</b> | <b>Specifications</b>                                           | <b>8</b>  | 7.2      | PCB Layout Guidelines                                                  | <b>43</b> |
| 5.1      | Absolute Maximum Ratings                                        | 8         | <b>8</b> | <b>器件和文档支持</b>                                                         | <b>47</b> |
| 5.2      | ESD Ratings                                                     | 8         | 8.1      | Third-Party Products Disclaimer                                        | <b>47</b> |
| 5.3      | Power-On Hours                                                  | 8         | 8.2      | 工具与软件                                                                  | <b>47</b> |
| 5.4      | Recommended Operating Conditions                                | 9         | 8.3      | 器件命名规则                                                                 | <b>47</b> |
| 5.5      | Power Consumption Summary                                       | 9         | 8.4      | Community Resources                                                    | <b>47</b> |
| 5.6      | Electrical Characteristics                                      | 11        | 8.5      | 商标                                                                     | <b>48</b> |
| 5.7      | Thermal Resistance Characteristics for VQFN-MR<br>(RVM) Package | 11        | 8.6      | 静电放电警告                                                                 | <b>48</b> |
| 5.8      | Timing and Switching Characteristics                            | 12        | 8.7      | Glossary                                                               | <b>48</b> |
| <b>6</b> | <b>Detailed Description</b>                                     | <b>23</b> | <b>9</b> | 机械、封装和可订购信息                                                            | <b>49</b> |

## 2 修订历史记录

注：之前版本的页码可能与当前版本有所不同。

| <b>Changes from April 8, 2016 to October 27, 2016</b> | <b>Page</b> |
|-------------------------------------------------------|-------------|
| • 已将文档状态更新至“量产数据”                                     | <b>1</b>    |

### 3 Device Comparison

Table 3-1 lists the features of the CC2564C device.

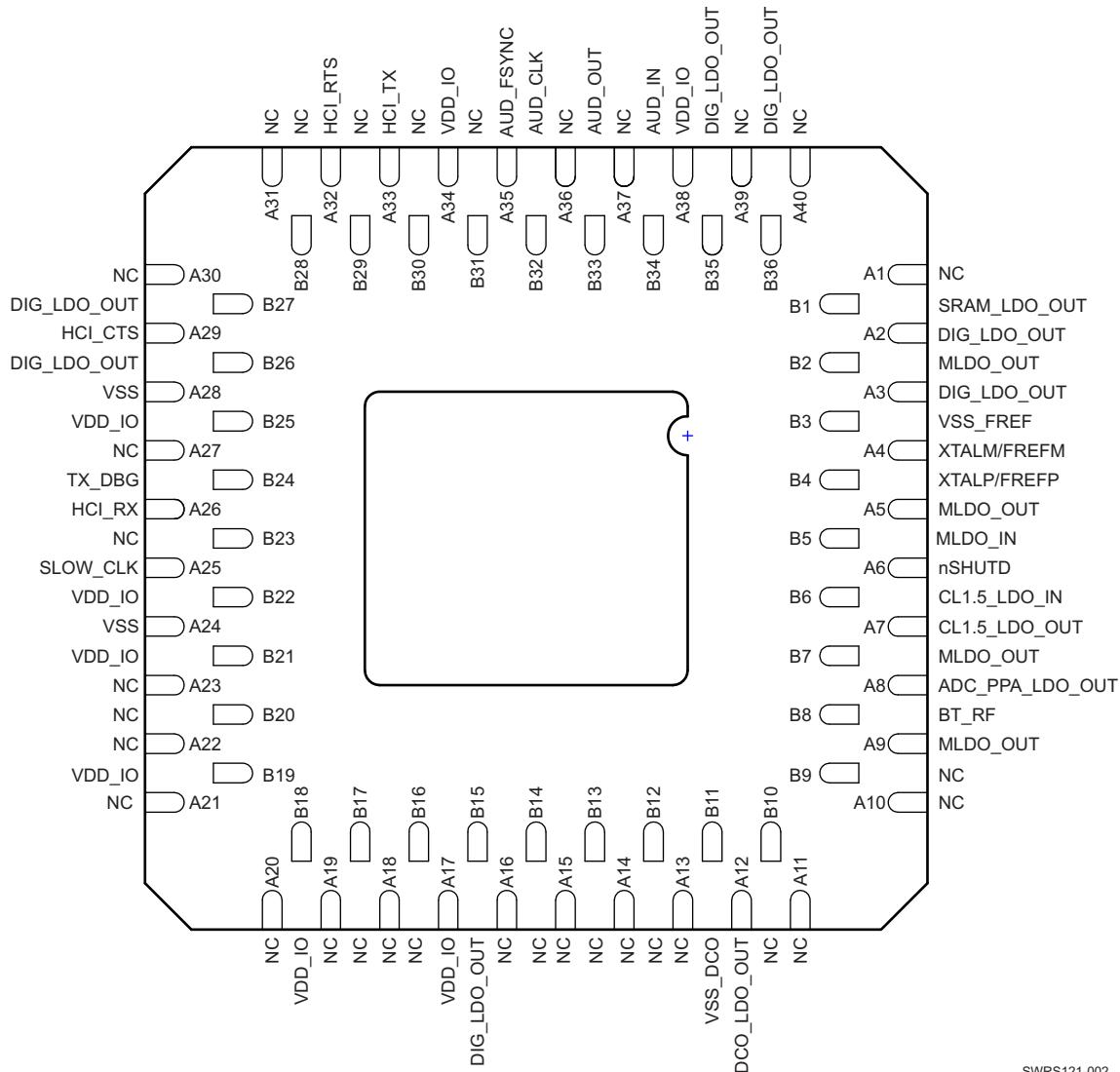
**Table 3-1. CC2564C Device Features**

| DEVICE  | DESCRIPTION                          | TECHNOLOGY SUPPORTED |            | ASSISTED MODES SUPPORTED <sup>(1)</sup> |      |
|---------|--------------------------------------|----------------------|------------|-----------------------------------------|------|
|         |                                      | BR, EDR              | LOW ENERGY | HFP 1.6 (WBS)                           | A2DP |
| CC2564C | Bluetooth 4.2 + Bluetooth low energy | √                    | √          | √                                       | √    |

(1) The assisted modes (HFP 1.6 and A2DP) are not supported simultaneously. Furthermore, the assisted modes are not supported simultaneously with Bluetooth low energy.

#### 3.1 Related Products

**Wireless Connectivity** The wireless connectivity portfolio offers a wide selection of low-power RF solutions suitable for a broad range of application. The offerings range from fully customized solutions to turnkey offerings with precertified hardware and software (protocol).


**Companion Products** Review products that are frequently purchased or used with the CC2564C product.

**Reference Designs for CC2564** The TI Designs Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jump-start your system design, all TI Designs include schematic or block diagrams, BOMs and design files to speed your time to market. Search and download designs at [ti.com/tidesigns](http://ti.com/tidesigns).

## 4 Terminal Configuration and Functions

### 4.1 VQFN-MR Pin Diagram

Figure 4-1 shows the bottom view of the pin diagram (VQFN-MR package).



SWRS121-002

**Figure 4-1. VQFN-MR Package Pin Diagram  
Bottom View**

#### 4.1.1 Pin Attributes (VQFN-MR Package)

Table 4-1 describes the pin attributes for the VQFN-MR package.

**Table 4-1. Pin Attributes (VQFN-MR Package)**

| NAME                            | NO.                                         | PULL AT<br>RESET | DEF.<br>DIR. <sup>(1)</sup> | I/O<br>Type <sup>(2)</sup> | DESCRIPTION                                                                                    |
|---------------------------------|---------------------------------------------|------------------|-----------------------------|----------------------------|------------------------------------------------------------------------------------------------|
| <b>I/O Signals</b>              |                                             |                  |                             |                            |                                                                                                |
| AUD_CLK                         | B32                                         | PD               | I/O                         | HY, 4<br>mA                | PCM clock<br>Fail-safe                                                                         |
| AUD_FSYNC                       | A35                                         | PD               | I/O                         | 4 mA                       | PCM frame-sync signal<br>Fail-safe                                                             |
| AUD_IN                          | B34                                         | PD               | I                           | 4 mA                       | PCM data input<br>Fail-safe                                                                    |
| AUD_OUT                         | B33                                         | PD               | O                           | 4 mA                       | PCM data output<br>Fail-safe                                                                   |
| HCI_CTS                         | A29                                         | PU               | I                           | 8 mA                       | HCI UART clear-to-send<br>The device is allowed to send data when HCI_CTS is low.              |
| HCI_RX                          | A26                                         | PU               | I                           | 8 mA                       | HCI universal asynchronous receiver/transmitter (UART) data receive                            |
| HCI_RTS                         | A32                                         | PU               | O                           | 8 mA                       | HCI UART request-to-send<br>The host is allowed to send data when HCI_RTS is low.              |
| HCI_TX                          | A33                                         | PU               | O                           | 8 mA                       | HCI UART data transmit                                                                         |
| TX_DBG                          | B24                                         | PU               | O                           | 2 mA                       | TI internal debug messages. TI recommends leaving an internal test point.                      |
| <b>Clock Signals</b>            |                                             |                  |                             |                            |                                                                                                |
| SLOW_CLK                        | A25                                         |                  | I                           |                            | 32.768-kHz clock in<br>Fail-safe                                                               |
| XTALP/FREPP                     | B4                                          |                  | I                           |                            | Fast clock in analog (sine wave)<br>Output terminal of fast-clock crystal<br>Fail-safe         |
| XTALM/FREFM                     | A4                                          |                  | I                           |                            | Fast clock in digital (square wave)<br>Input terminal of fast-clock crystal<br>Fail-safe       |
| <b>Analog Signals</b>           |                                             |                  |                             |                            |                                                                                                |
| BT_RF                           | B8                                          |                  | I/O                         |                            | Bluetooth RF I/O                                                                               |
| nSHUTD                          | A6                                          | PD               | I                           |                            | Shutdown input (active low)                                                                    |
| <b>Power and Ground Signals</b> |                                             |                  |                             |                            |                                                                                                |
| ADC_PPA_LDO_OUT                 | A8                                          |                  | O                           |                            | ADC/PPA LDO output                                                                             |
| CL1.5_LDO_IN                    | B6                                          |                  | I                           |                            | Power amplifier (PA) LDO input<br>Connect directly to battery                                  |
| CL1.5_LDO_OUT                   | A7                                          |                  | O                           |                            | PA LDO output                                                                                  |
| DCO_LDO_OUT                     | A12                                         |                  | O                           |                            | DCO LDO output                                                                                 |
| DIG_LDO_OUT                     | A2, A3,<br>B15,<br>B26,<br>B27,<br>B35, B36 |                  | O                           |                            | Digital LDO output<br>QFN pin B26 or B27 must be shorted to other DIG_LDO_OUT pins on the PCB. |
| MLDO_IN                         | B5                                          |                  | I                           |                            | Main LDO input<br>Connect directly to battery                                                  |
| MLDO_OUT                        | A5, A9,<br>B2, B7                           |                  | I/O                         |                            | Main LDO output (1.8-V nominal)                                                                |
| SRAM_LDO_OUT                    | B1                                          |                  | O                           |                            | SRAM LDO output                                                                                |

(1) I = input; O = output; I/O = bidirectional

(2) I/O Type: Digital I/O cells. HY = input hysteresis, current = typical output current

**Table 4-1. Pin Attributes (VQFN-MR Package) (continued)**

| NAME     | NO.                                                      | PULL AT<br>RESET | DEF.<br>DIR. <sup>(1)</sup> | I/O<br>Type <sup>(2)</sup> | DESCRIPTION                      |
|----------|----------------------------------------------------------|------------------|-----------------------------|----------------------------|----------------------------------|
| VDD_IO   | A17,<br>A34,<br>A38,<br>B18,<br>B19,<br>B21,<br>B22, B25 |                  | I                           |                            | I/O power supply (1.8-V nominal) |
| VSS      | A24, A28                                                 |                  | I                           |                            | Ground                           |
| VSS_DCO  | B11                                                      |                  | I                           |                            | DCO ground                       |
| VSS_FREF | B3                                                       |                  | I                           |                            | Fast clock ground                |

#### 4.1.2 Connections for Unused Signals (VQFN-MR Package)

Section 4.1.2 lists the connections for unused signals for the VQFN-MR package.

| FUNCTION | PIN NUMBER | DESCRIPTION     |
|----------|------------|-----------------|
| NC       | A1         | Not connected   |
| NC       | A10        | Not connected   |
| NC       | A11        | Not connected   |
| NC       | A14        | Not connected   |
| NC       | A18        | Not connected   |
| NC       | A19        | Not connected   |
| NC       | A20        | Not connected   |
| NC       | A21        | Not connected   |
| NC       | A22        | Not connected   |
| NC       | A23        | Not connected   |
| NC       | A27        | Not connected   |
| NC       | A30        | Not connected   |
| NC       | A31        | Not connected   |
| NC       | A40        | Not connected   |
| NC       | B9         | Not connected   |
| NC       | B10        | Not connected   |
| NC       | B16        | Not connected   |
| NC       | B17        | Not connected   |
| NC       | B20        | Not connected   |
| NC       | B23        | Not connected   |
| NC       | A13        | TI internal use |
| NC       | A15        | TI internal use |
| NC       | A16        | TI internal use |
| NC       | A36        | TI internal use |
| NC       | A37        | TI internal use |
| NC       | A39        | TI internal use |
| NC       | B12        | TI internal use |
| NC       | B13        | TI internal use |
| NC       | B14        | TI internal use |
| NC       | B29        | TI internal use |
| NC       | B30        | TI internal use |
| NC       | B31        | TI internal use |
| NC       | B28        | TI internal use |

## 5 Specifications

Unless otherwise indicated, all measurements are taken at the device pins of the TI test evaluation board (EVB). All specifications are over process, voltage, and temperature, unless otherwise indicated.

### 5.1 Absolute Maximum Ratings<sup>(1)</sup>

Over operating free-air temperature range (unless otherwise indicated). All parameters are measured as follows: VDD\_IN = 3.6 V and VDD\_IO = 1.8 V (unless otherwise indicated).

|                                                              |             | MIN  | MAX          | UNIT             |
|--------------------------------------------------------------|-------------|------|--------------|------------------|
| Supply voltage                                               | VDD_IN      | -0.5 | 4.8          | V <sup>(2)</sup> |
|                                                              | VDDIO_1.8 V | -0.5 | 2.145        | V                |
| Input voltage to analog pins <sup>(3)</sup>                  |             | -0.5 | 2.1          | V                |
| Input voltage to all other pins                              |             | -0.5 | VDD_IO + 0.5 | V                |
| Bluetooth RF inputs                                          |             |      | 10           | dBm              |
| Operating ambient temperature, T <sub>A</sub> <sup>(4)</sup> |             | -40  | 85           | °C               |
| Storage temperature, T <sub>stg</sub>                        |             | -55  | 125          | °C               |

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) Maximum allowed depends on accumulated time at that voltage: VDD\_IN is defined in [Section 7.1](#).
- (3) Analog pins: BT\_RF, XTALP, and XTALM
- (4) The reference design supports a temperature range of -20°C to +70°C because of the operating conditions of the crystal.

### 5.2 ESD Ratings

|                    |                         | VALUE                                                                          | UNIT |
|--------------------|-------------------------|--------------------------------------------------------------------------------|------|
| V <sub>(ESD)</sub> | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>              | ±500 |
|                    |                         | Charged device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±250 |

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

### 5.3 Power-On Hours

| DEVICE  | CONDITIONS                                                           | POWER-ON HOURS   |
|---------|----------------------------------------------------------------------|------------------|
| CC2564C | Duty cycle = 25% active and 75% sleep<br>T <sub>ambient</sub> = 85°C | 15,400 (7 years) |

## 5.4 Recommended Operating Conditions

|                                                                                |                                                                     |                   | MIN           | MAX               | UNIT |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------|---------------|-------------------|------|
| VDD_IN                                                                         | Power supply voltage                                                |                   | 1.7           | 4.8               | V    |
| VDD_IO                                                                         | I/O power supply voltage                                            |                   | 1.62          | 1.92              | V    |
| V <sub>IH</sub>                                                                | High-level input voltage                                            | Default condition | 0.65 × VDD_IO | VDD_IO            | V    |
| V <sub>IL</sub>                                                                | Low-level input voltage                                             | Default condition | 0             | 0.35 × VDD_IO     | V    |
| t <sub>r</sub> and t <sub>f</sub>                                              | I/O input rise and fall times,<br>10% to 90%—asynchronous mode      |                   | 1             | 10                | ns   |
|                                                                                | I/O input rise and fall times,<br>10% to 90%—synchronous mode (PCM) |                   | 1             | 2.5               | ns   |
| Maximum ripple on VDD_IN (sine wave) for<br>1.8 V (DC-DC) mode                 | Condition: 0 to 0.1 MHz                                             |                   | 60            | mV <sub>p-p</sub> |      |
|                                                                                | Condition: 0.1 to 0.5 MHz                                           |                   | 50            |                   |      |
|                                                                                | Condition: 0.5 to 2.5 MHz                                           |                   | 30            |                   |      |
|                                                                                | Condition: 2.5 to 3.0 MHz                                           |                   | 15            |                   |      |
|                                                                                | Condition: > 3.0 MHz                                                |                   | 5             |                   |      |
| Voltage dips on VDD_IN (VBAT)<br>Duration = 577 µs to 2.31 ms, period = 4.6 ms |                                                                     |                   | 400           | mV                |      |
| Maximum ambient operating temperature <sup>(1)</sup> <sup>(2)</sup>            |                                                                     |                   | -40           | 85                |      |
|                                                                                |                                                                     |                   |               |                   | °C   |

(1) The device can be reliably operated for 7 years at T<sub>ambient</sub> of 85°C, assuming 25% active mode and 75% sleep mode (15,400 cumulative active power-on hours).

(2) A crystal-based solution is limited by the temperature range required for the crystal to meet 20 ppm.

## 5.5 Power Consumption Summary

### 5.5.1 Static Current Consumption

| OPERATIONAL MODE                                          | MIN | TYP | MAX   | UNIT |
|-----------------------------------------------------------|-----|-----|-------|------|
| Shutdown mode <sup>(1)</sup>                              | 1   | 7   |       | µA   |
| Deep sleep mode <sup>(2)</sup>                            | 40  | 105 |       | µA   |
| Total I/O current consumption in active mode              |     |     | 1     | mA   |
| Continuous transmission—GFSK <sup>(3)</sup>               |     |     | 107   | mA   |
| Continuous transmission—EDR <sup>(4)</sup> <sup>(5)</sup> |     |     | 112.5 | mA   |

(1) VBAT + VIO + V<sub>SHUTDOWN</sub>

(2) VBAT + VIO

(3) At maximum output power dBm

(4) At maximum output power dBm

(5) Both π/4 DQPSK and 8DPSK

## 5.5.2 Dynamic Current Consumption

### 5.5.2.1 Current Consumption for Different Bluetooth BR and EDR Scenarios

Conditions: VDD\_IN = 3.6 V, 25°C, 26-MHz XTAL, nominal unit, 10-dBm output power

| OPERATIONAL MODE                                                  | MASTER AND SLAVE | AVERAGE CURRENT | UNIT |
|-------------------------------------------------------------------|------------------|-----------------|------|
| SCO link HV3                                                      | Master and slave | 13.7            | mA   |
| Extended SCO (eSCO) link EV3 64 kbps, no retransmission           | Master and slave | 13.2            | mA   |
| eSCO link 2-EV3 64 kbps, no retransmission                        | Master and slave | 10              | mA   |
| GFSK full throughput: TX = DH1, RX = DH5                          | Master and slave | 40.5            | mA   |
| EDR full throughput: TX = 2-DH1, RX = 2-DH5                       | Master and slave | 41.2            | mA   |
| EDR full throughput: TX = 3-DH1, RX = 3-DH5                       | Master and slave | 41.2            | mA   |
| Sniff, four attempts, 1.28 seconds                                | Master and slave | 145             | µA   |
| Page or inquiry scan 1.28 seconds, 11.25 ms                       | Master and slave | 320             | µA   |
| Page (1.28 seconds) and inquiry (2.56 seconds) scans, 11.25 ms    | Master and slave | 445             | µA   |
| A2DP source                                                       | Master           | 13.9            | mA   |
| A2DP sink                                                         | Master           | 15.2            | mA   |
| Assisted A2DP source                                              | Master           | 16.9            | mA   |
| Assisted A2DP sink                                                | Master           | 18.1            | mA   |
| Assisted WBS EV3; retransmit effort = 2; maximum latency = 8 ms   | Master and slave | 17.5 and 18.5   | mA   |
| Assisted WBS 2EV3; retransmit effort = 2; maximum latency = 12 ms | Master and slave | 11.9 and 13     | mA   |

### 5.5.2.2 Current Consumption for Different Low-Energy Scenarios

Conditions: VDD\_IN = 3.6 V, 25°C, nominal unit, 10-dBm output power

| MODE                        | DESCRIPTION                                                                                       | AVERAGE CURRENT                                                                           | UNIT |
|-----------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------|
| Advertising, nonconnectable | Advertising in all three channels<br>1.28-seconds advertising interval<br>15 bytes advertise data | 114                                                                                       | µA   |
| Advertising, discoverable   | Advertising in all three channels<br>1.28-seconds advertising interval<br>15 bytes advertise data | 138                                                                                       | µA   |
| Scanning                    | Listening to a single frequency per window<br>1.28-seconds scan interval<br>11.25-ms scan window  | 324                                                                                       | µA   |
| Connected                   | Master role                                                                                       | 500-ms connection interval<br>0-ms slave connection latency<br>Empty TX and RX LL packets | 169  |
|                             | Slave role                                                                                        |                                                                                           | 199  |

## 5.6 Electrical Characteristics

| RATING                                                |                                  | CONDITION                      | MIN                            | MAX | UNIT |
|-------------------------------------------------------|----------------------------------|--------------------------------|--------------------------------|-----|------|
| High-level output voltage, $V_{OH}$                   | At 2, 4, 8 mA                    | 0.8 $\times$ VDD <sub>IO</sub> | VDD <sub>IO</sub>              | V   |      |
|                                                       | At 0.1 mA                        | VDD <sub>IO</sub> – 0.2        | VDD <sub>IO</sub>              |     |      |
| Low-level output voltage, $V_{OL}$                    | At 2, 4, 8 mA                    | 0                              | 0.2 $\times$ VDD <sub>IO</sub> | V   |      |
|                                                       | At 0.1 mA                        | 0                              | 0.2                            |     |      |
| I/O input impedance                                   | Resistance                       | 1                              |                                | MΩ  |      |
|                                                       | Capacitance                      |                                | 5                              |     |      |
| Output rise and fall times, 10% to 90% (digital pins) | $C_L = 20 \text{ pF}$            |                                | 10                             | ns  |      |
| I/O pull currents                                     | PCM-I <sub>2</sub> S bus, TX_DBG | PU                             | Typical = 6.5                  | 3.5 | 9.7  |
|                                                       |                                  | PD                             | Typical = 27                   | 9.5 | 55   |
|                                                       | All others                       | PU                             | Typical = 100                  | 50  | 300  |
|                                                       |                                  | PD                             | Typical = 100                  | 50  | 360  |

## 5.7 Thermal Resistance Characteristics for VQFN-MR (RVM) Package

over operating free-air temperature range (unless otherwise noted)

| THERMAL METRICS <sup>(1)</sup>     |                            | C/W <sup>(2)</sup> |
|------------------------------------|----------------------------|--------------------|
| R <sub>θ</sub> <sub>ja</sub>       | Junction-to-free-air       | 34.6               |
| R <sub>θ</sub> <sub>jctop</sub>    | Junction-to-case-top       | 17.9               |
| R <sub>θ</sub> <sub>jcbottom</sub> | Junction-to-case-bottom    | 1.6                |
| R <sub>θ</sub> <sub>jb</sub>       | Junction-to-board          | 12.0               |
| Φ <sub>jt</sub>                    | Junction-to-package-top    | 0.2                |
| Φ <sub>jb</sub>                    | Junction-to-package-bottom | 12.0               |

(1) For more information about traditional and new thermal metrics, see [Semiconductor and IC Package Thermal Metrics](#).

(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [R<sub>θ</sub>JC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:

- JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)*
- JESD51-3, *Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages*
- JESD51-7, *High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages*
- JESD51-9, *Test Boards for Area Array Surface Mount Package Thermal Measurements*

Power dissipation of 2 W and an ambient temperature of 70°C is assumed.

## 5.8 Timing and Switching Characteristics

### 5.8.1 Device Power Supply

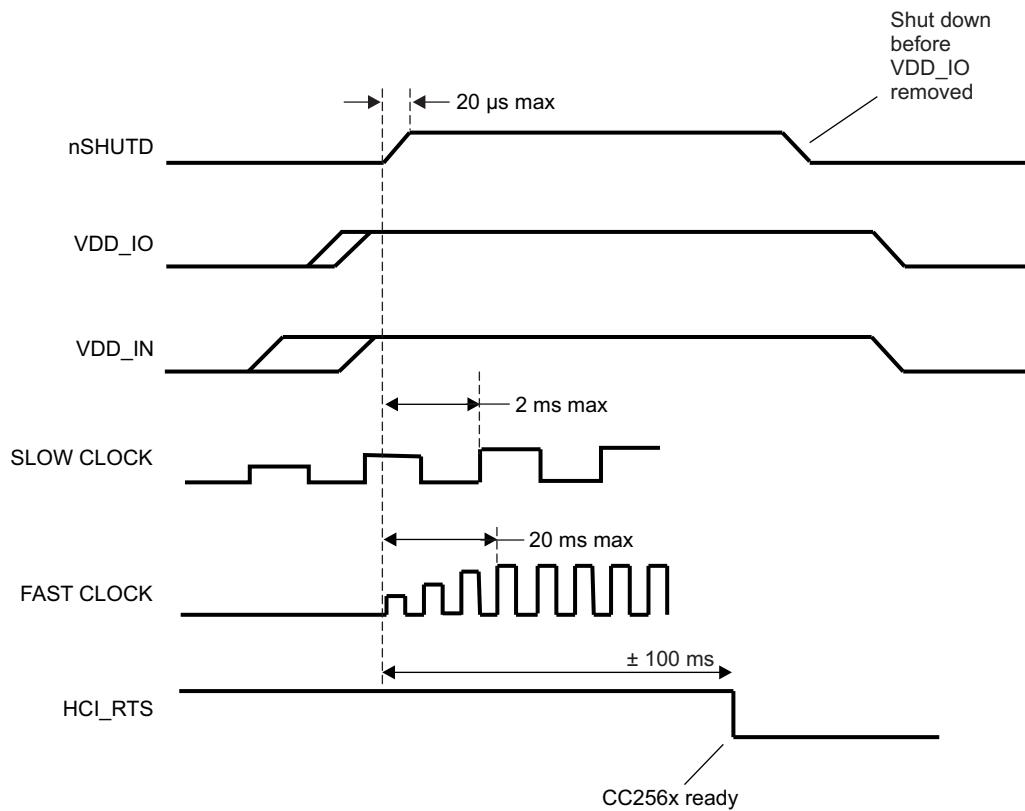
The CC2564C power-management hardware and software algorithms provide significant power savings, which is a critical parameter in an MCU-based system.

The power-management module is optimized for drawing extremely low currents.

#### 5.8.1.1 Power Sources

The CC2564C device requires two power sources:

- VDD\_IN: main power supply for the device
- VDD\_IO: power source for the 1.8-V I/O ring


The HCI module includes several on-chip voltage regulators for increased noise immunity and can be connected directly to the battery.

#### 5.8.1.2 Device Power-Up and Power-Down Sequencing

The device includes the following power-up requirements (see [Figure 5-1](#)):

- nSHUTD must be low. VDD\_IN and VDD\_IO are don't care I/O pins when nSHUTD is low. However, signals are not allowed on the I/O pins if I/O power is not supplied, because the I/Os are not fail-safe. Exceptions are SLOW\_CLK\_IN and AUD\_xxx, which are fail-safe and can tolerate external voltages with no VDD\_IO and VDD\_IN.
- VDD\_IO and VDD\_IN must be stable before releasing nSHUTD.
- The fast clock must be stable within 20 ms of nSHUTD going high.
- The slow clock must be stable within 2 ms of nSHUTD going high.

The device indicates that the power-up sequence is complete by asserting RTS low, which occurs up to 100 ms after nSHUTD goes high. If RTS does not go low, the device is not powered up. In this case, ensure that the sequence and requirements are met.



Copyright © 2016, Texas Instruments Incorporated

**Figure 5-1. Power-Up and Power-Down Sequencing**

#### 5.8.1.3 Power Supplies and Shutdown—Static States

The nSHUTD signal puts the device in ultra-low-power mode and performs an internal reset to the device. The rise time for nSHUTD must not exceed 20  $\mu$ s; nSHUTD must be low for a minimum of 5 ms.

To prevent conflicts with external signals, all I/O pins are set to the high-impedance (Hi-Z) state during shutdown and power up of the device. The internal pull resistors are enabled on each I/O pin, as described in [Section 4.1.1](#). [Table 5-1](#) lists and describes the static operation states.

**Table 5-1. Power Modes**

|   | VDD_IN <sup>(1)</sup> | VDD_IO <sup>(1)</sup> | nSHUTD <sup>(1)</sup> | PM_MODE     | COMMENTS                                                                     |
|---|-----------------------|-----------------------|-----------------------|-------------|------------------------------------------------------------------------------|
| 1 | None                  | None                  | Asserted              | Shutdown    | I/O state is undefined. No I/O voltages are allowed on nonfail-safe pins.    |
| 2 | None                  | None                  | Deasserted            | Not allowed | I/O state is undefined. No I/O voltages are allowed on nonfail-safe pins.    |
| 3 | None                  | Present               | Asserted              | Shutdown    | I/Os are defined as tri-state pins with internal pullup or pulldown enabled. |
| 4 | None                  | Present               | Deasserted            | Not allowed | I/O state is undefined. No I/O voltages are allowed on nonfail-safe pins.    |
| 5 | Present               | None                  | Asserted              | Shutdown    | I/O state is undefined.                                                      |
| 6 | Present               | None                  | Deasserted            | Not allowed | I/O state is undefined. No I/O voltages are allowed on nonfail-safe pins.    |
| 7 | Present               | Present               | Asserted              | Shutdown    | I/Os are defined as tri-state pins with internal pullup or pulldown enabled. |
| 8 | Present               | Present               | Deasserted            | Active      | See <a href="#">Section 5.8.1.4</a> .                                        |

(1) The terms *None* or *Asserted* can imply any of the following conditions: directly pulled to ground or driven low, pulled to ground through a pulldown resistor, or left NC or floating (high-impedance output stage).

### 5.8.1.4 I/O States in Various Power Modes

#### CAUTION

Some device I/Os are not fail-safe (see [Section 4.1.1](#)). Fail-safe means that the pins do not draw current from an external voltage applied to the pin when I/O power is not supplied to the device. External voltages are not allowed on these I/O pins when the I/O supply voltage is not supplied because of possible damage to the device.

[Table 5-2](#) lists the I/O states in various power modes.

**Table 5-2. I/O States in Various Power Modes**

| I/O NAME  | SHUTDOWN <sup>(1)</sup> |      | DEFAULT ACTIVE <sup>(1)</sup> |      | DEEP SLEEP <sup>(1)</sup> |      |
|-----------|-------------------------|------|-------------------------------|------|---------------------------|------|
|           | I/O State               | Pull | I/O State                     | Pull | I/O State                 | Pull |
| HCI_RX    | Z                       | PU   | I                             | PU   | I                         | PU   |
| HCI_TX    | Z                       | PU   | O-H                           |      | O                         |      |
| HCI_RTS   | Z                       | PU   | O-H                           |      | O                         |      |
| HCI_CTS   | Z                       | PU   | I                             | PU   | I                         | PU   |
| AUD_CLK   | Z                       | PD   | I                             | PD   | I                         | PD   |
| AUD_FSYNC | Z                       | PD   | I                             | PD   | I                         | PD   |
| AUD_IN    | Z                       | PD   | I                             | PD   | I                         | PD   |
| AUD_OUT   | Z                       | PD   | Z                             | PD   | Z                         | PD   |
| TX_DBG    | Z                       | PU   | O                             |      |                           |      |

(1) I = input, O = output, Z = Hi-Z, – = no pull, PU = pullup, PD = pulldown, H = high, L = low

### 5.8.1.5 nSHUTD Requirements

| PARAMETER                                           | MIN  | MAX  | UNIT    |
|-----------------------------------------------------|------|------|---------|
| $V_{IH}$ Operation mode level <sup>(1)</sup>        | 1.42 | 1.98 | V       |
| $V_{IL}$ Shutdown mode level <sup>(1)</sup>         | 0    | 0.4  | V       |
| Minimum time for nSHUT_DOWN low to reset the device | 5    |      | ms      |
| $t_r$ and $t_f$ Rise and fall times                 |      | 20   | $\mu$ s |

(1) An internal pulldown retains shutdown mode when no external signal is applied to this pin.

## 5.8.2 Clock Specifications

### 5.8.2.1 Slow Clock Requirements

An external source must supply the slow clock and connect to the SLOW\_CLK\_IN pin (for example, the host or external crystal oscillator). The source must be a digital signal in the range of 0 to 1.8 V. The accuracy of the slow-clock frequency must be  $32.768 \text{ kHz} \pm 250 \text{ ppm}$  for Bluetooth use (as specified in the Bluetooth specification). The external slow clock must be stable within 64 slow-clock cycles (2 ms) following the release of nSHUTD.

| CHARACTERISTICS                                       |                                 | CONDITION                  | MIN                    | TYP | MAX                    | UNIT   |  |
|-------------------------------------------------------|---------------------------------|----------------------------|------------------------|-----|------------------------|--------|--|
| Input slow-clock frequency                            |                                 |                            | 32768                  |     | Hz                     |        |  |
| Input slow-clock accuracy<br>(Initial + temp + aging) |                                 | Bluetooth                  | $\pm 250$              |     | ppm                    |        |  |
| $t_r$ and $t_f$<br>$t_r$ and $t_f$<br>(10% to 90%)    |                                 |                            | 200                    |     | ns                     |        |  |
| Frequency input duty cycle                            |                                 |                            | 15%                    | 50% | 85%                    |        |  |
| $V_{IH}$                                              | Slow-clock input voltage limits | Square wave,<br>DC-coupled | $0.65 \times VDD_{IO}$ |     | $VDD_{IO}$             | V peak |  |
| $V_{IL}$                                              |                                 |                            | 0                      |     | $0.35 \times VDD_{IO}$ | V peak |  |
| Input impedance                                       |                                 |                            | 1                      |     | $M\Omega$              |        |  |
| Input capacitance                                     |                                 |                            | 5                      |     | $pF$                   |        |  |

### 5.8.2.2 External Fast Clock Crystal Requirements and Operation

| CHARACTERISTICS                                       |                               | CONDITION                                                          | MIN      | TYP | MAX      | UNIT |
|-------------------------------------------------------|-------------------------------|--------------------------------------------------------------------|----------|-----|----------|------|
| $f_{in}$                                              | Supported crystal frequencies |                                                                    | 26, 38.4 |     | MHz      |      |
| Frequency accuracy<br>(Initial + temperature + aging) |                               |                                                                    | $\pm 20$ |     | ppm      |      |
| Crystal oscillator negative resistance                |                               | 26 MHz, external capacitance = 8 pF<br>$I_{osc} = 0.5 \text{ mA}$  | 650      | 940 | $\Omega$ |      |
|                                                       |                               | 26 MHz, external capacitance = 20 pF<br>$I_{osc} = 2.2 \text{ mA}$ | 490      | 710 |          |      |

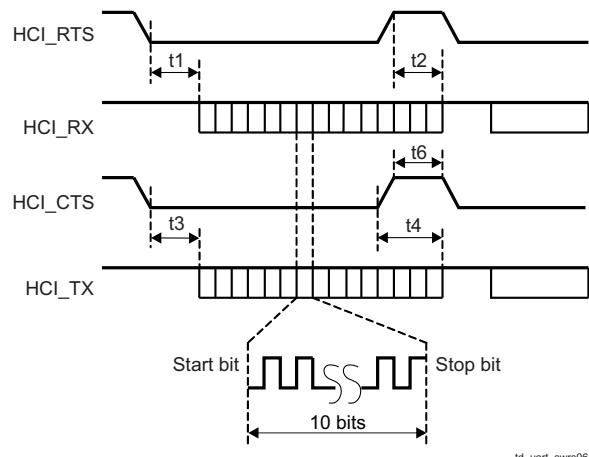
### 5.8.2.3 Fast Clock Source Requirements (–40°C to +85°C)

| CHARACTERISTICS                                   | CONDITION                          | MIN      | TYP  | MAX    | UNIT      |
|---------------------------------------------------|------------------------------------|----------|------|--------|-----------|
| Supported frequencies, $F_{REF}$                  |                                    | 26       | 38.4 |        | MHz       |
| Reference frequency accuracy                      | Initial + temp + aging             |          |      | ±20    | ppm       |
| Fast-clock input voltage limits                   | Square wave, DC-coupled            | $V_{IL}$ | –0.2 | 0.37   | V         |
|                                                   |                                    | $V_{IH}$ | 1.0  | 2.1    | V         |
|                                                   | Sine wave, AC-coupled              |          | 0.4  | 1.6    | $V_{p-p}$ |
| Fast-clock input voltage limits                   | Sine wave, DC-coupled              |          | 0.4  | 1.6    | $V_{p-p}$ |
|                                                   | Sine wave input limits, DC-coupled |          | 0.0  | 1.6    | V         |
| Fast-clock input rise time (as % of clock period) | Square wave, DC-coupled            |          |      | 10%    |           |
| Duty cycle                                        |                                    | 35%      | 50%  | 65%    |           |
| Phase noise for 26 MHz                            | @ offset = 1 kHz                   |          |      | –123.4 |           |
|                                                   | @ offset = 10 kHz                  |          |      | –133.4 |           |
|                                                   | @ offset = 100 kHz                 |          |      | –138.4 | dBc/Hz    |

### 5.8.3 Peripherals

#### 5.8.3.1 UART

Figure 5-2 shows the UART timing diagram.



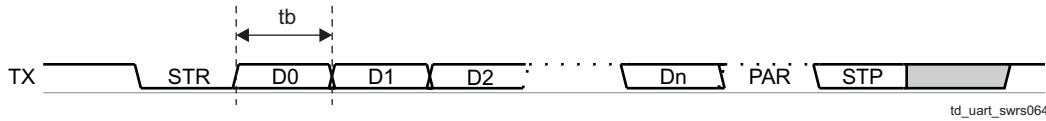


Figure 5-2. UART Timing

Table 5-3 lists the UART timing characteristics.

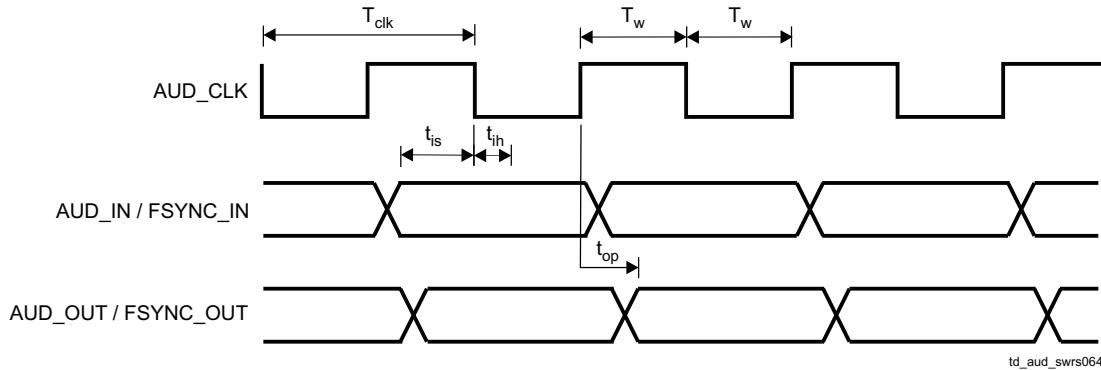
Table 5-3. UART Timing Characteristics

| SYMBOL | CHARACTERISTICS             | CONDITION                 | MIN    | TYP   | MAX | UNIT |
|--------|-----------------------------|---------------------------|--------|-------|-----|------|
|        | Baud rate                   |                           | 37.5   | 4000  |     | kbps |
|        | Baud rate accuracy per byte | Receive and transmit      | –2.5%  | 1.5%  |     |      |
|        | Baud rate accuracy per bit  | Receive and transmit      | –12.5% | 12.5% |     |      |
| t1     | RTS low to RX_DATA on       |                           | 0      | 2     |     | μs   |
| t2     | RTS high to RX_DATA off     | Interrupt set to 1/4 FIFO |        |       | 16  | byte |
| t3     | CTS low to TX_DATA on       |                           | 0      | 2     |     | μs   |
| t4     | CTS high to TX_DATA off     | Hardware flow control     |        |       | 1   | byte |
| t6     | CTS-high pulse width        |                           |        | 1     |     | bit  |

Figure 5-3 shows the UART data frame.



**Figure 5-3. Data Frame**


Table 5-4 describes the symbols used in Figure 5-3.

**Table 5-4. Data Frame Key**

| SYMBOL  | DESCRIPTION           |
|---------|-----------------------|
| STR     | Start bit             |
| D0...Dn | Data bits (LSB first) |
| PAR     | Parity bit (optional) |
| STP     | Stop bit              |

### 5.8.3.2 PCM

Figure 5-4 shows the interface timing for the PCM.



**Figure 5-4. PCM Interface Timing**

Table 5-5 lists the associated PCM master parameters.

**Table 5-5. PCM Master**

| SYMBOL    | PARAMETER                  | CONDITION  | MIN                   | MAX               | UNIT |
|-----------|----------------------------|------------|-----------------------|-------------------|------|
| $t_{clk}$ | Cycle time                 |            | 244.14<br>(4.096 MHz) | 15625<br>(64 kHz) | ns   |
| $t_w$     | High or low pulse width    |            | 50% of $T_{clk}$ min  |                   | ns   |
| $t_{is}$  | AUD_IN setup time          |            | 25                    |                   | ns   |
| $t_{ih}$  | AUD_IN hold time           |            | 0                     |                   | ns   |
| $t_{op}$  | AUD_OUT propagation time   | 40-pF load | 0                     | 10                | ns   |
| $t_{op}$  | FSYNC_OUT propagation time | 40-pF load | 0                     | 10                | ns   |

Table 5-6 lists the associated PCM slave parameters.

**Table 5-6. PCM Slave**

| SYMBOL    | PARAMETER                | CONDITION  | MIN               | MAX | UNIT |
|-----------|--------------------------|------------|-------------------|-----|------|
| $t_{clk}$ | Cycle time               |            | 66.67<br>(15 MHz) |     | ns   |
| $t_w$     | High or low pulse width  |            | 40% of $T_{clk}$  |     | ns   |
| $T_{is}$  | AUD_IN setup time        |            | 8                 |     | ns   |
| $t_{lh}$  | AUD_IN hold time         |            | 0                 |     | ns   |
| $t_{ls}$  | AUD_FSYNC setup time     |            | 8                 |     | ns   |
| $t_{lh}$  | AUD_FSYNC hold time      |            | 0                 |     | ns   |
| $t_{op}$  | AUD_OUT propagation time | 40-pF load | 0                 | 21  | ns   |

## 5.8.4 RF Performance

### 5.8.4.1 Bluetooth BR and EDR RF Performance

All parameters in this section that are fast-clock dependent are verified using a 26-MHz XTAL and 38.4-MHz TCXO.

#### 5.8.4.1.1 Bluetooth Receiver—In-Band Signals

| CHARACTERISTICS                                      | CONDITION                                  | MIN            | TYP   | MAX | BLUETOOTH SPECIFICATION | UNIT     |
|------------------------------------------------------|--------------------------------------------|----------------|-------|-----|-------------------------|----------|
| Operation frequency range                            |                                            | 2402           | 2480  |     |                         | MHz      |
| Channel spacing                                      |                                            |                | 1     |     |                         | MHz      |
| Input impedance                                      |                                            |                | 50    |     |                         | $\Omega$ |
| Sensitivity, dirty TX on <sup>(1)</sup>              | GFSK, BER = 0.1%                           | -91.5          | -95   |     | -70                     | dBm      |
|                                                      | $\pi/4$ -DQPSK, BER = 0.01%                | -90.5          | -94.5 |     | -70                     |          |
|                                                      | 8DPSK, BER = 0.01%                         | -81            | -87.5 |     | -70                     |          |
| BER error floor at sensitivity + 10 dB, dirty TX off | $\pi/4$ -DQPSK                             | 1E-6           | 1E-7  |     | 1E-5                    |          |
|                                                      | 8DPSK                                      | 1E-6           |       |     | 1E-5                    |          |
| Maximum usable input power                           | GFSK, BER = 0.1%                           | -5             |       |     | -20                     | dBm      |
|                                                      | $\pi/4$ -DQPSK, BER = 0.1%                 | -10            |       |     |                         |          |
|                                                      | 8DPSK, BER = 0.1%                          | -10            |       |     |                         |          |
| Intermodulation characteristics                      | Level of interferers (for n = 3, 4, and 5) | -36            | -30   |     | -39                     | dBm      |
| C/I performance <sup>(2)</sup><br>Image = -1 MHz     | GFSK, cochannel                            | 8              | 10    | 11  |                         | dB       |
|                                                      | EDR, cochannel                             | $\pi/4$ -DQPSK | 9.5   | 11  | 13                      |          |
|                                                      |                                            | 8DPSK          | 16.5  | 20  | 21                      |          |
|                                                      | GFSK, adjacent $\pm 1$ MHz                 | -10            | -5    | 0   |                         |          |
|                                                      | EDR, adjacent $\pm 1$ MHz, (image)         | $\pi/4$ -DQPSK | -10   | -5  | 0                       |          |
|                                                      |                                            | 8DPSK          | -5    | -1  | 5                       |          |
|                                                      | GFSK, adjacent +2 MHz                      | -38            | -35   | -30 |                         |          |
|                                                      | EDR, adjacent, +2 MHz                      | $\pi/4$ -DQPSK | -38   | -35 | -30                     |          |
|                                                      |                                            | 8DPSK          | -38   | -30 | -25                     |          |
|                                                      | GFSK, adjacent -2 MHz                      | -28            | -20   | -20 |                         |          |
|                                                      | EDR, adjacent -2 MHz                       | $\pi/4$ -DQPSK | -28   | -20 | -20                     |          |
|                                                      |                                            | 8DPSK          | -22   | -13 | -13                     |          |
|                                                      | GFSK, adjacent $\geq  \pm 3 $ MHz          | -45            | -43   | -40 |                         |          |
|                                                      | EDR, adjacent $\geq  \pm 3 $ MHz           | $\pi/4$ -DQPSK | -45   | -43 | -40                     |          |
|                                                      |                                            | 8DPSK          | -44   | -36 | -33                     |          |
| RF return loss                                       |                                            | -10            |       |     |                         | dB       |
| RX mode LO leakage                                   | Fr <sub>f</sub> = (received RF – 0.6 MHz)  | -63            | -58   |     |                         | dBm      |

(1) Sensitivity degradation up to 3 dB may occur for minimum and typical values where the Bluetooth frequency is a harmonic of the fast clock.

(2) Numbers show ratio of desired signal to interfering signal. Smaller numbers indicate better C/I performance.

#### 5.8.4.1.2 Bluetooth Receiver—General Blocking

| CHARACTERISTICS                                                                           | CONDITION        | MIN | TYP | UNIT |
|-------------------------------------------------------------------------------------------|------------------|-----|-----|------|
| Blocking performance over full range, according to Bluetooth specification <sup>(1)</sup> | 30 to 2000 MHz   |     | -6  | dBm  |
|                                                                                           | 2000 to 2399 MHz |     | -6  |      |
|                                                                                           | 2484 to 3000 MHz |     | -6  |      |
|                                                                                           | 3 to 12.75 GHz   |     | -6  |      |

(1) Exceptions are taken out of the total 24 allowed in the Bluetooth specification.

#### 5.8.4.1.3 Bluetooth Transmitter—GFSK

| CHARACTERISTICS                        |                                      | MIN | TYP | MAX | BLUETOOTH SPECIFICATION | UNIT |
|----------------------------------------|--------------------------------------|-----|-----|-----|-------------------------|------|
| Maximum RF output power <sup>(1)</sup> | VDD_IN = VBAT                        |     | 12  |     |                         | dBm  |
|                                        | VDD_IN = external regulator to 1.8 V |     | 10  |     |                         |      |
| Power variation over Bluetooth band    |                                      | -1  |     | 1   |                         | dB   |
| Gain control range                     |                                      |     | 30  |     |                         | dB   |
| Power control step                     |                                      |     | 5   |     | 2 to 8                  | dB   |
| Adjacent channel power  M–N  = 2       |                                      |     | -45 |     | ≤ -20                   | dBm  |
| Adjacent channel power  M–N  > 2       |                                      |     | -50 |     | ≤ -40                   | dBm  |

(1) To modify maximum output power, use an HCI VS command.

#### 5.8.4.1.4 Bluetooth Transmitter—EDR

| CHARACTERISTICS                     |                |                                      | MIN | TYP | MAX | BLUETOOTH SPECIFICATION | UNIT |  |
|-------------------------------------|----------------|--------------------------------------|-----|-----|-----|-------------------------|------|--|
| EDR output power <sup>(1)</sup>     | $\pi/4$ -DQPSK | VDD_IN = VBAT                        |     | 5.5 |     |                         | dBm  |  |
|                                     |                | VDD_IN = external regulator to 1.8 V |     | 5.5 |     |                         |      |  |
|                                     | 8DPSK          | VDD_IN = VBAT                        |     | 5.5 |     |                         |      |  |
|                                     |                | VDD_IN = external regulator to 1.8 V |     | 5.5 |     |                         |      |  |
| EDR relative power                  |                |                                      | -2  | 1   |     | -4 to +1                | dB   |  |
| Power variation over Bluetooth band |                |                                      | -1  |     | 1   |                         | dB   |  |
| Gain control range                  |                |                                      |     | 30  |     |                         | dB   |  |
| Power control step                  |                |                                      |     | 5   |     | 2 to 8                  | dB   |  |
| Adjacent channel power  M–N  = 1    |                |                                      |     | -36 |     | ≤ -26                   | dBc  |  |
| Adjacent channel power  M–N  = 2    |                |                                      |     | -30 |     | ≤ -20                   | dBm  |  |
| Adjacent channel power  M–N  > 2    |                |                                      |     | -42 |     | ≤ -40                   | dBm  |  |

(1) To modify maximum output power, use an NCI VS command.

#### 5.8.4.1.5 Bluetooth Modulation—GFSK

| CHARACTERISTICS |                                     | CONDITION                                       |                                             | MIN | TYP | MAX | BLUETOOTH SPECIFICATION | UNIT      |
|-----------------|-------------------------------------|-------------------------------------------------|---------------------------------------------|-----|-----|-----|-------------------------|-----------|
|                 | -20-dB bandwidth                    | GFSK                                            |                                             |     | 925 |     | ≤ 1000                  | kHz       |
| F1 avg          | Modulation characteristics          | Δf1avg                                          | Mod data = 4 1 s, 4 0 s:<br>111100001111... |     | 165 |     | 140 to 175              | kHz       |
| F2 max          |                                     | Δf2max ≥ limit for at least 99.9% of all Δf2max | Mod data = 1010101...                       |     | 130 |     | > 115                   | kHz       |
|                 | Δf2avg, Δf1avg                      |                                                 |                                             |     | 88% |     | > 80%                   |           |
|                 | Absolute carrier frequency drift    | DH1                                             |                                             | -25 | 25  |     | < ±25                   | kHz       |
|                 |                                     | DH3 and DH5                                     |                                             | -35 | 35  |     | < ±40                   |           |
|                 | Drift rate                          |                                                 |                                             |     | 15  |     | < 20                    | kHz/50 μs |
|                 | Initial carrier frequency tolerance | f0–fTX                                          |                                             | -75 | +75 |     | < ±75                   | kHz       |

#### 5.8.4.1.6 Bluetooth Modulation—EDR

| CHARACTERISTICS                     | CONDITION | MIN | TYP | MAX | BLUETOOTH<br>SPECIFICATION | UNIT |
|-------------------------------------|-----------|-----|-----|-----|----------------------------|------|
| Carrier frequency stability         |           |     |     | ±5  | ≤ 10                       | kHz  |
| Initial carrier frequency tolerance |           |     |     | ±75 | ±75                        | kHz  |
| RMS DEVM <sup>(1)</sup>             | π/4-DQPSK |     | 6%  |     | 20%                        |      |
|                                     | 8DPSK     |     | 6%  |     | 13%                        |      |
| 99% DEVM <sup>(1)</sup>             | π/4-DQPSK |     |     | 30% | 30%                        |      |
|                                     | 8DPSK     |     |     | 20% | 20%                        |      |
| Peak DEVM <sup>(1)</sup>            | π/4-DQPSK |     | 14% |     | 35%                        |      |
|                                     | 8DPSK     |     | 16% |     | 25%                        |      |

(1) Maximum performance refers to maximum TX power.

#### 5.8.4.1.7 Bluetooth Transmitter—Out-of-Band and Spurious Emissions

| CHARACTERISTICS                 | CONDITION                        | TYP | MAX | UNIT |
|---------------------------------|----------------------------------|-----|-----|------|
| Second harmonic <sup>(1)</sup>  | Measured at maximum output power | −14 | −2  | dBm  |
| Third harmonic <sup>(1)</sup>   |                                  | −10 | −6  | dBm  |
| Fourth harmonics <sup>(1)</sup> |                                  | −19 | −11 | dBm  |

(1) Meets FCC and ETSI requirements with external filter shown in [Figure 7-1](#).

#### 5.8.4.2 Bluetooth low energy RF Performance

All parameters in this section that are fast-clock dependent are verified using a 26-MHz XTAL and a 38.4-MHz TCXO.

#### 5.8.4.2.1 Bluetooth low energy Receiver—In-Band Signals

| CHARACTERISTIC                                   | CONDITION                                 | MIN  | TYP | MAX  | BLUETOOTH<br>low energy<br>SPECIFICATION | UNIT |
|--------------------------------------------------|-------------------------------------------|------|-----|------|------------------------------------------|------|
| Operation frequency range                        |                                           | 2402 |     | 2480 |                                          | MHz  |
| Channel spacing                                  |                                           |      | 2   |      |                                          | MHz  |
| Input impedance                                  |                                           |      | 50  |      |                                          | Ω    |
| Sensitivity, dirty TX on <sup>(1)</sup>          | PER = 30.8%; dirty TX on                  |      | −96 |      | ≤ −70                                    | dBm  |
| Maximum usable input power                       | GMSK, PER = 30.8%                         |      | −5  |      | ≥ −10                                    | dBm  |
| Intermodulation characteristics                  | Level of interferers<br>(for n = 3, 4, 5) |      | −30 |      | ≥ −50                                    | dBm  |
| C/I performance <sup>(2)</sup><br>Image = −1 MHz | GMSK, cochannel                           |      | 8   |      | ≤ 21                                     | dB   |
|                                                  | GMSK, adjacent ±1 MHz                     |      | −5  |      | ≤ 15                                     |      |
|                                                  | GMSK, adjacent +2 MHz                     |      | −45 |      | ≤ −17                                    |      |
|                                                  | GMSK, adjacent −2 MHz                     |      | −22 |      | ≤ −15                                    |      |
|                                                  | GMSK, adjacent ≥  ±3  MHz                 |      | −47 |      | ≤ −27                                    |      |
| RX mode LO leakage                               | Fr <sub>f</sub> = (received RF − 0.6 MHz) |      | −63 |      |                                          | dBm  |

(1) Sensitivity degradation up to 3 dB may occur where the Bluetooth low energy frequency is a harmonic of the fast clock.

(2) Numbers show wanted signal-to-interfering signal ratio. Smaller numbers indicate better C/I performance.

#### 5.8.4.2.2 Bluetooth low energy Receiver—General Blocking

| CHARACTERISTICS                                                                                      | CONDITION        | MIN | TYP | BLUETOOTH<br>low energy<br>SPECIFICATION | UNIT |
|------------------------------------------------------------------------------------------------------|------------------|-----|-----|------------------------------------------|------|
| Blocking performance over full range, according to Bluetooth low energy specification <sup>(1)</sup> | 30 to 2000 MHz   |     | -15 | $\geq -30$                               | dBm  |
|                                                                                                      | 2000 to 2399 MHz |     | -15 | $\geq -35$                               |      |
|                                                                                                      | 2484 to 3000 MHz |     | -15 | $\geq -35$                               |      |
|                                                                                                      | 3 to 12.75 GHz   |     | -15 | $\geq -30$                               |      |

(1) Exceptions are taken out of the total 10 allowed in the Bluetooth low energy specification.

#### 5.8.4.2.3 Bluetooth low energy Transmitter

| CHARACTERISTICS                                | MIN                                  | TYP | MAX               | BLUETOOTH<br>low energy<br>SPECIFICATION | UNIT |
|------------------------------------------------|--------------------------------------|-----|-------------------|------------------------------------------|------|
| RF output power                                | VDD_IN = VBAT                        |     | 12 <sup>(1)</sup> | $\leq 10$                                | dBm  |
|                                                | VDD_IN = External regulator to 1.8 V |     | 10                | $\leq 10$                                |      |
| Power variation over Bluetooth low energy band |                                      |     | 1                 |                                          | dB   |
| Adjacent channel power $ M-N  = 2$             |                                      | −45 |                   | $\leq -20$                               | dBm  |
| Adjacent channel power $ M-N  > 2$             |                                      | −50 |                   | $\leq -30$                               | dBm  |

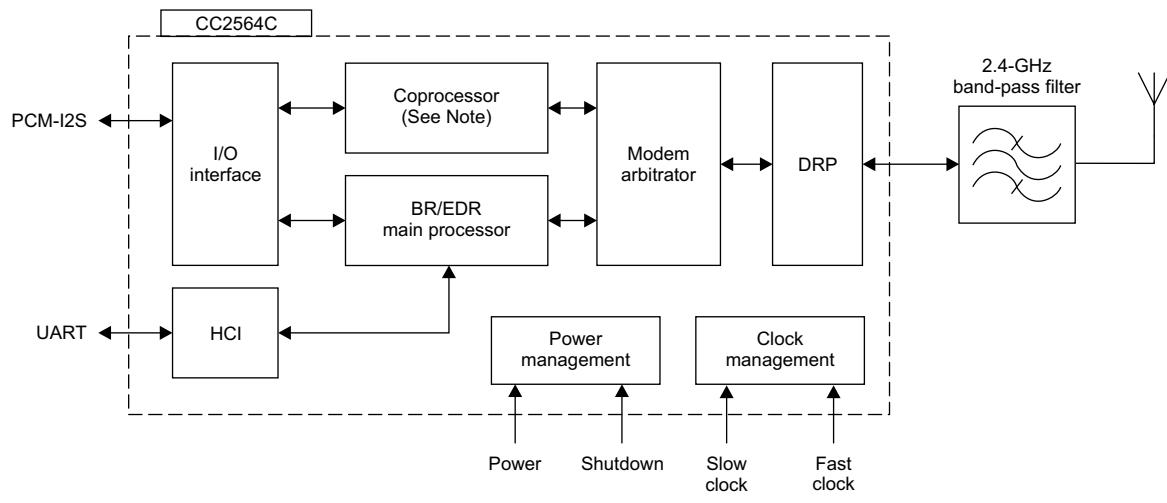
(1) To achieve the Bluetooth low energy specification of 10-dBm maximum, an insertion loss of > 2 dB is assumed between the RF ball and the antenna. Otherwise, use an HCI VS command to modify the output power.

#### 5.8.4.2.4 Bluetooth low energy Modulation

| CHARACTERISTICS                     | CONDITION                  | MIN                                                                      | TYP                                            | MAX      | BLUETOOTH<br>low energy<br>SPECIFICATION | UNIT       |     |
|-------------------------------------|----------------------------|--------------------------------------------------------------------------|------------------------------------------------|----------|------------------------------------------|------------|-----|
| $\Delta f_1$ avg                    | Modulation characteristics | $\Delta f_1$ avg                                                         | Mod data = 4 1s, 4 0 s:<br>1111000011110000... |          | 240 250 260                              | 225 to 275 | kHz |
| $\Delta f_2$ max                    |                            | $\Delta f_2$ max $\geq$ limit for at least 99.9% of all $\Delta f_2$ max | Mod data = 1010101...                          |          | 185 210                                  | $\geq 185$ | kHz |
|                                     |                            | $\Delta f_2$ avg, $\Delta f_1$ avg                                       |                                                | 0.85 0.9 |                                          | $\geq 0.8$ |     |
| Absolute carrier frequency drift    |                            |                                                                          | −25                                            | 25       | $\leq \pm 50$                            | kHz        |     |
| Drift rate                          |                            |                                                                          |                                                | 15       | $\leq 20$                                | kHz/50 ms  |     |
| Initial carrier frequency tolerance |                            |                                                                          | −75                                            | 75       | $\leq \pm 100$                           | kHz        |     |

#### 5.8.4.2.5 Bluetooth low energy Transceiver, Out-Of-Band and Spurious Emissions

| CHARACTERISTICS                 | CONDITION                        | TYP | MAX | UNIT |
|---------------------------------|----------------------------------|-----|-----|------|
| Second harmonic <sup>(1)</sup>  | Measured at maximum output power | −14 | −2  | dBm  |
| Third harmonic <sup>(1)</sup>   |                                  | −10 | −6  | dBm  |
| Fourth harmonics <sup>(1)</sup> |                                  | −19 | −11 | dBm  |


(1) Meets FCC and ETSI requirements with external filter shown in Figure 7-1.

## 6 Detailed Description

### 6.1 Overview

The CC2564C architecture comprises a DRP and a point-to-multipoint baseband core. The architecture is based on a single-processor ARM7TDMI® core. The device includes several on-chip peripherals to enable easy communication with a host system and the Bluetooth BR, EDR, and low energy core.

### 6.2 Functional Block Diagram



Copyright © 2016, Texas Instruments Incorporated

NOTE: The following technologies and assisted modes cannot be used simultaneously with the coprocessor: Bluetooth low energy, assisted HFP 1.6 (WBS), and assisted A2DP. Only one technology or assisted mode can be used at a time.

**Figure 6-1. CC2564C Functional Block Diagram**

### 6.3 Clock Inputs

This section describes the available clock inputs. For specifications, see [Section 5.8.2](#).

#### 6.3.1 Slow Clock

An external source must supply the slow clock and connect to the SLOW\_CLK\_IN pin (for example, the host or external crystal oscillator). The source must be a digital signal in the range of 0 V to 1.8 V. The accuracy of the slow-clock frequency must be  $32.768 \text{ kHz} \pm 250 \text{ ppm}$  for Bluetooth use (as specified in the Bluetooth specification). The external slow clock must be stable within 64 slow-clock cycles (2 ms) following the release of nSHUTD.

#### 6.3.2 Fast Clock Using External Clock Source

An external clock source is fed to an internal pulse-shaping cell to provide the fast-clock signal for the device. The device incorporates an internal, automatic clock-scheme detection mechanism that automatically detects the fast-clock scheme used and configures the FREF cell accordingly. This mechanism ensures that the electrical characteristics (loading) of the fast-clock input remain static regardless of the scheme used and eliminates any power-consumption penalty-versus-scheme used.

The frequency variation of the fast-clock source must not exceed  $\pm 20 \text{ ppm}$  (as defined by the Bluetooth specification).

The external clock can be AC- or DC-coupled, sine or square wave.

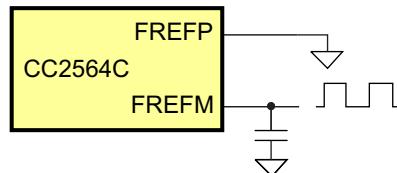
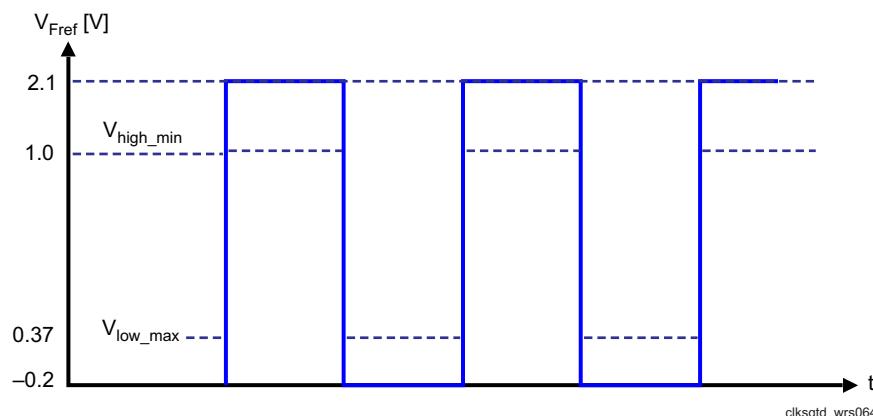

### 6.3.2.1 External $F_{REF}$ DC-Coupled

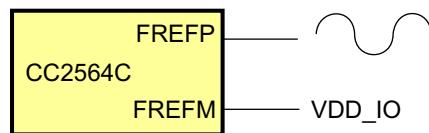
Figure 6-2 and Figure 6-3 show the clock configuration when using a square wave, DC-coupled external source for the fast-clock input.

#### NOTE


A shunt capacitor with a range of 10 nF must be added on the oscillator output to reject high harmonics and shape the signal to be close to a sinusoidal waveform.

TI recommends using only a dedicated LDO to feed the oscillator. Do not use the same VIO for the oscillator and the CC2564C device.




Copyright © 2016, Texas Instruments Incorporated

**Figure 6-2. Clock Configuration (Square Wave, DC-Coupled)**



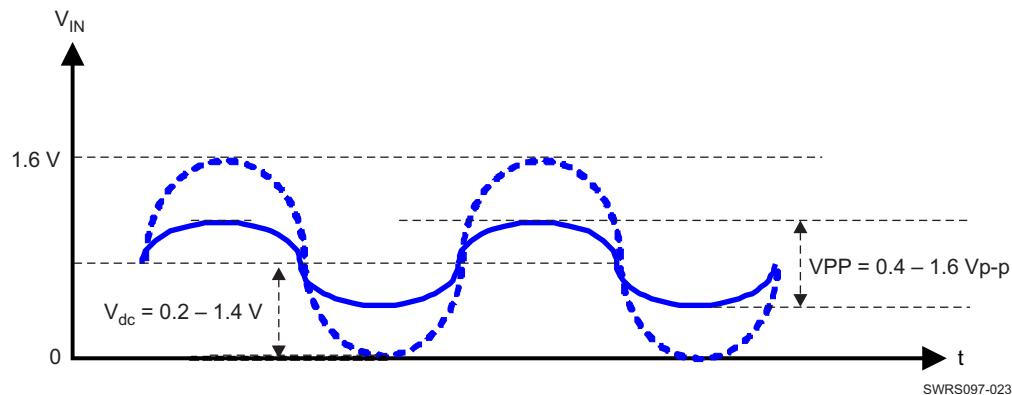
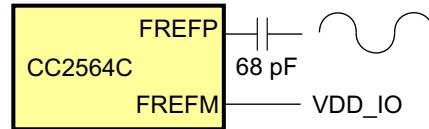

**Figure 6-3. External Fast Clock (Square Wave, DC-Coupled)**

Figure 6-4 and Figure 6-5 show the clock configuration when using a sine wave, DC-coupled external source for the fast clock input.



Copyright © 2016, Texas Instruments Incorporated


**Figure 6-4. Clock Configuration (Sine Wave, DC-Coupled)**



**Figure 6-5. External Fast Clock (Sine Wave, DC-Coupled)**

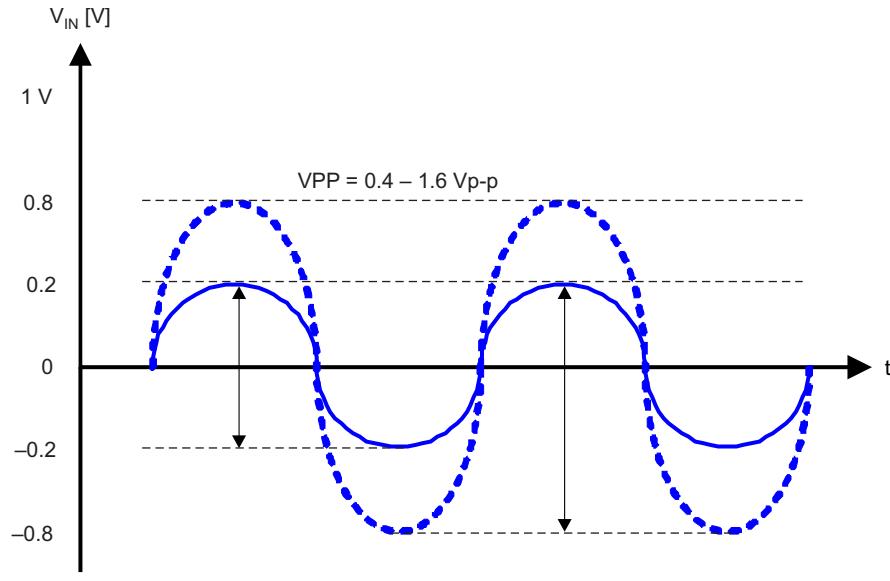

### 6.3.2.2 External $F_{REF}$ Sine Wave, AC-Coupled

Figure 6-6 and Figure 6-7 show the configuration when using a sine wave, AC-coupled external source for the fast-clock input.

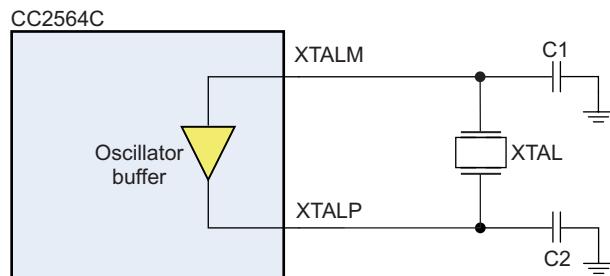


Copyright © 2016, Texas Instruments Incorporated

**Figure 6-6. Clock Configuration (Sine Wave, AC-Coupled)**



**Figure 6-7. External Fast Clock (Sine Wave, AC-Coupled)**


In cases where the input amplitude is greater than  $1.6 \text{ V}_{\text{p-p}}$ , the amplitude can be reduced to within limits. Using a small series capacitor forms a voltage divider with the internal input capacitance of approximately  $2 \text{ pF}$  to provide the required amplitude at the device input.

### 6.3.2.3 Fast Clock Using External Crystal

The CC2564C device incorporates an internal crystal oscillator buffer to support a crystal-based fast-clock scheme. The supported crystal frequencies are 26 and 38.4 MHz.

The frequency accuracy of the fast-clock source must not exceed  $\pm 20$  ppm (including the accuracy of the capacitors, as specified in the Bluetooth specification).

Figure 6-8 shows the recommended fast-clock circuitry.

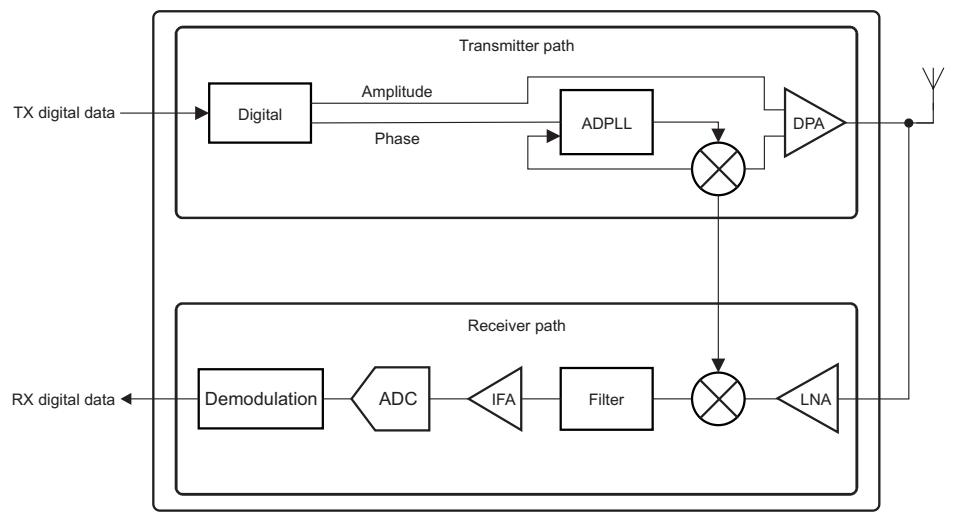


**Figure 6-8. Fast-Clock Crystal Circuit**

Table 6-1 lists component values for the fast-clock crystal circuit.

**Table 6-1. Fast-Clock Crystal Circuit Component Values**

| FREQ (MHz) | C1 (pF) <sup>(1)</sup> | C2 (pF) <sup>(1)</sup> |
|------------|------------------------|------------------------|
| 26         | 12                     | 12                     |


(1) To achieve the required accuracy, values for C1 and C2 must be taken from the crystal manufacturer's data sheet and layout considerations.

## 6.4 Functional Blocks

### 6.4.1 RF

The CC2564C device is the third generation of Bluetooth single-chip devices using DRP architecture from TI. Modifications and new features added to the DRP further improve radio performance.

Figure 6-9 shows the DRP block diagram.



**Figure 6-9. DRP Block Diagram**

#### 6.4.1.1 Receiver

The receiver uses near-zero-IF architecture to convert the RF signal to baseband data. The signal received from the external antenna is input to a single-ended low-noise amplifier (LNA) and passed to a mixer that downconverts the signal to IF, followed by a filter and amplifier. The signal is then quantized by a sigma-delta analog-to-digital converter (ADC) and further processed to reduce the interference level.

The demodulator digitally downconverts the signal to zero-IF and recovers the data stream using an adaptive-decision mechanism. The demodulator includes EDR processing with:

- State-of-the-art performance
- A maximum-likelihood sequence estimator (MLSE) to improve the performance of basic-rate GFSK sensitivity
- Adaptive equalization to enhance EDR modulation

New features include:

- LNA input range narrowed to increase blocking performance
- Active spur cancellation to increase robustness to spurs

#### 6.4.1.2 Transmitter

The transmitter is an all-digital, sigma-delta phase-locked loop (ADPLL) based with a digitally controlled oscillator (DCO) at 2.4 GHz as the RF clock. The transmitter directly modulates the digital PLL. The power amplifier is also digitally controlled. The transmitter uses the polar-modulation technique. While the phase-modulated control word is fed to the ADPLL, the amplitude-modulated controlled word is fed to the class-E amplifier to generate a Bluetooth standard-compliant RF signal.

New features include:

- Improved TX output power
- LMS algorithm to improve the differential error vector magnitude (DEVM)

#### 6.4.2 Host Controller Interface

The CC2564C device incorporates one UART module dedicated to the HCI transport layer. The HCI transports commands, events, and ACL between the device and the host using HCI data packets.

The CC2564C device supports the H4 protocol (4-wire UART) with hardware flow control and the H5 protocol (3-wire UART) with software flow control. The CC2564C device automatically detects the protocol on reception of the first command.

The maximum baud rate of the UART module is 4 Mbps; however, the default baud rate after power up is set to 115.2 kbps. The baud rate can thereafter be changed with a VS command. The device responds with a command complete event (still at 115.2 kbps), after which the baud rate change occurs.

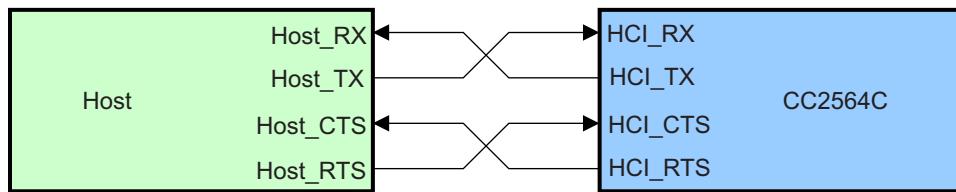
The UART module includes the following features:

- Receiver detection of break, idle, framing, FIFO overflow, and parity error conditions
- Transmitter underflow detection
- CTS and RTS hardware flow control (H4 protocol)
- XON and XOFF software flow control (H5 protocol)

Table 6-2 lists the UART module default settings.

**Table 6-2. UART Module Default Settings**

| PARAMETER   | VALUE      |
|-------------|------------|
| Bit rate    | 115.2 kbps |
| Data length | 8 bits     |
| Stop bit    | 1          |
| Parity      | None       |


#### 6.4.2.1 4-Wire UART Interface—H4 Protocol

The H4 UART Interface includes four signals:

- TX
- RX
- CTS
- RTS

Flow control between the host and the CC2564C device is bytewise by hardware.

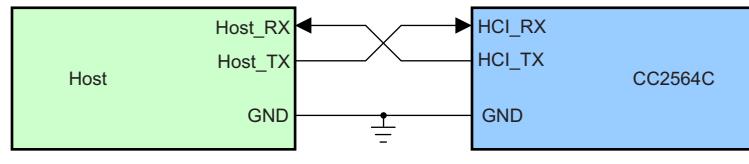
Figure 6-10 shows the H4 UART interface.



**Figure 6-10. H4 UART Interface**

When the UART RX buffer of the device passes the flow control threshold, it sets the HCI\_RTS signal high to stop transmission from the host.

When the HCI\_CTS signal is set high, the device stops transmission on the interface. If HCI\_CTS is set high while transmitting a byte, the device finishes transmitting the byte and stops the transmission.


The H4 protocol device includes a mechanism that handles the transition between active mode and sleep mode. The protocol occurs through the CTS and RTS UART lines and is known as the enhanced HCI low level (eHCILL) power-management protocol.

For more information on the H4 UART protocol, see *Volume 4 Host Controller Interface, Part A UART Transport Layer of the Bluetooth Core Specifications* ([www.bluetooth.org/en-us/specification/adoptedspecifications](http://www.bluetooth.org/en-us/specification/adoptedspecifications)).

#### 6.4.2.2 3-Wire UART Interface—H5 Protocol

The H5 UART interface consists of three signals (see [Figure 6-11](#)):

- TX
- RX
- GND



Copyright © 2016, Texas Instruments Incorporated

**Figure 6-11. H5 UART Interface**

The H5 protocol supports the following features:

- Software flow control (XON/XOFF)
- Power management using the software messages:
  - WAKEUP
  - WOKEN
  - SLEEP
- CRC data integrity check

For more information on the H5 UART protocol, see *Volume 4 Host Controller Interface, Part D Three-Wire UART Transport Layer of the Bluetooth Core Specifications* ([www.bluetooth.org/en-us/specification/adoptedspecifications](http://www.bluetooth.org/en-us/specification/adoptedspecifications)).

#### 6.4.3 Digital Codec Interface

The codec interface is a fully programmable port to support seamless interfacing with different PCM and I2S codec devices. The interface includes the following features:

- Two voice channels
- Master and slave modes
- All voice coding schemes defined by the Bluetooth specification: linear, A-Law, and  $\mu$ -Law
- Long and short frames
- Different data sizes, order, and positions
- High flexibility to support a variety of codecs
- Bus sharing: Data\_Out is in the Hi-Z state when the interface is not transmitting voice data.

#### 6.4.3.1 Hardware Interface

The interface includes four signals:

- Clock: configurable direction (input or output)
- Frame\_Sync and Word\_Sync: configurable direction (input or output)
- Data\_In: input
- Data\_Out: output or tri-state signal

The CC2564C device can be the master of the interface when generating the Clock and Frame\_Sync signals or the slave when receiving these two signals.

For slave mode, clock input frequencies of up to 15 MHz are supported. At clock rates above 12 MHz, the maximum data burst size is 32 bits.

For master mode, the device can generate any clock frequency from 64 kHz to 4.096 MHz.

#### 6.4.3.2 I2S

When the codec interface is configured to support the I2S protocol, these settings are recommended:

- Bidirectional, full-duplex interface
- Two time slots per frame: time slot 0 for the left channel audio data; and time slot 1 for the right channel audio data
- The length of each time slot is configurable up to 40 serial clock cycles, and the length of the frame is configurable up to 80 serial clock cycles

#### 6.4.3.3 Data Format

The data format is fully configurable:

- The data length can be from 8 to 320 bits in 1-bit increments when working with 2 channels, or up to 640 bits when working with 1 channel. The data length can be set independently for each channel.
- The data position within a frame is also configurable within 1 clock (bit) resolution and can be set independently (relative to the edge of the Frame\_Sync signal) for each channel.
- The Data\_In and Data\_Out bit order can be configured independently. For example; Data\_In can start with the most significant bit (MSB); Data\_Out can start with the least significant bit (LSB). Each channel is separately configurable. The inverse bit order (that is, LSB first) is supported only for sample sizes up to 24 bits.
- Data\_In and Data\_Out are not required to be the same length.
- The Data\_Out line is configured to Hi-Z output between data words. Data\_Out can also be set for permanent Hi-Z output, regardless of the data output. This configuration allows the device to be a bus slave in a multislave PCM environment. At power up, Data\_Out is configured as Hi-Z output.

#### 6.4.3.4 Frame-Idle Period

The codec interface handles frame-idle periods, during which the clock pauses and becomes 0 at the end of the frame after all data are transferred.

The device supports frame-idle periods both as master and slave of the codec bus.

When the device is the master of the interface, the frame-idle period is configurable. There are two configurable parameters:

- Clk\_Idle\_Start: indicates the number of clock cycles from the beginning of the frame to the beginning of the frame-idle period. After Clk\_Idle\_Start clock cycles, the clock becomes 0.
- Clk\_Idle\_End: indicates the time from the beginning of the frame to the end of the frame-idle period. The time is given in multiples of clock periods.

The delta between Clk\_Idle\_Start and Clk\_Idle\_End is the clock idle period.

For example, for clock rate = 1 MHz, frame sync period = 10 kHz, Clk\_Idle\_Start = 60, Clk\_Idle\_End = 90.

Between both Frame\_Sync signals there are 70 clock cycles (instead of 100). The clock idle period starts 60 clock cycles after the beginning of the frame and lasts  $90 - 60 = 30$  clock cycles. Thus, the idle period ends  $100 - 90 = 10$  clock cycles before the end of the frame. The data transmission must end before the beginning of the idle period.

Figure 6-12 shows the frame idle timing.

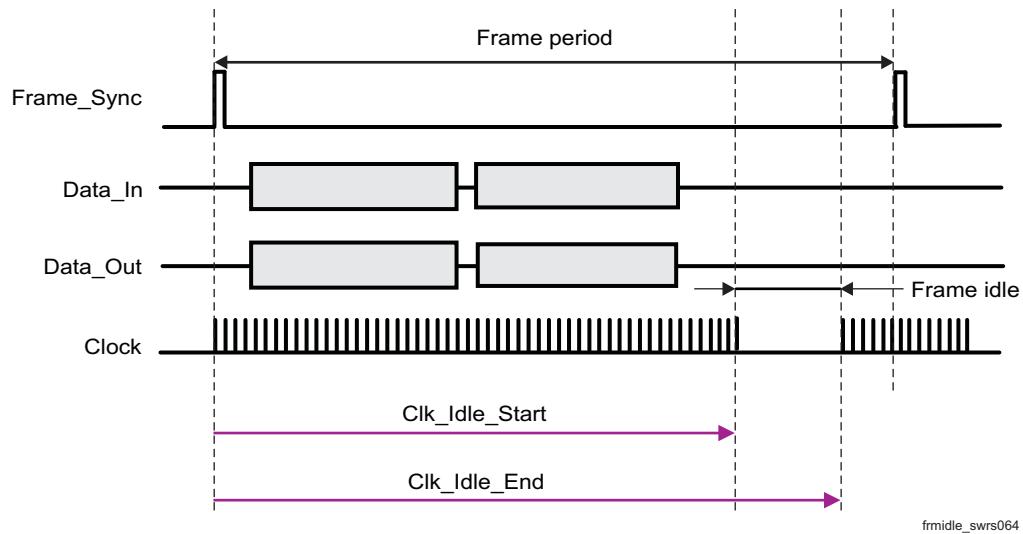
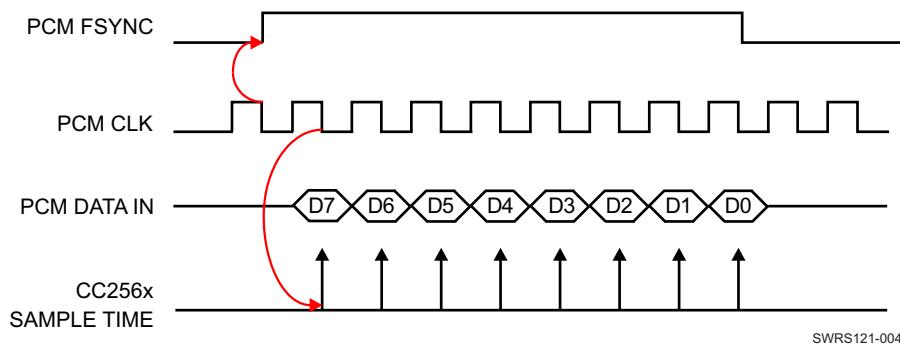
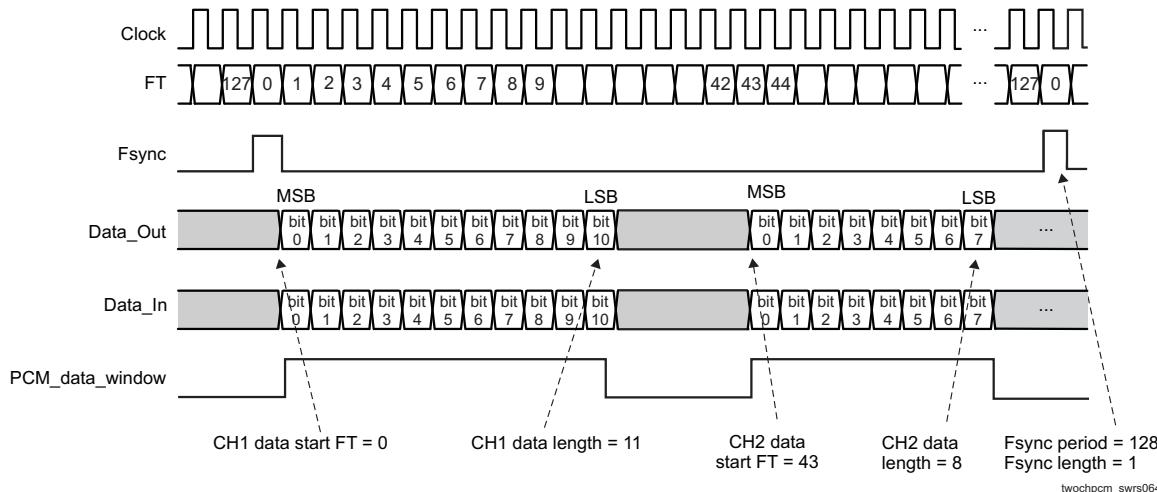




Figure 6-12. Frame Idle Period

#### 6.4.3.5 Clock-Edge Operation

The codec interface of the device can work on the rising or the falling edge of the clock and can sample the Frame\_Sync signal and the data at inverted polarity.

Figure 6-13 shows the operation of a falling-edge-clock type of codec. The codec is the master of the bus. The Frame\_Sync signal is updated (by the codec) on the falling edge of the clock and is therefore sampled (by the device) on the next rising clock. The data from the codec is sampled (by the device) on the falling edge of the clock.




Copyright © 2016, Texas Instruments Incorporated

Figure 6-13. Negative Clock Edge Operation

#### 6.4.3.6 Two-Channel Bus Example

Figure 6-14 shows a 2-channel bus in which the two channels have different word sizes and arbitrary positions in the bus frame.



NOTE: FT stands for frame timer.

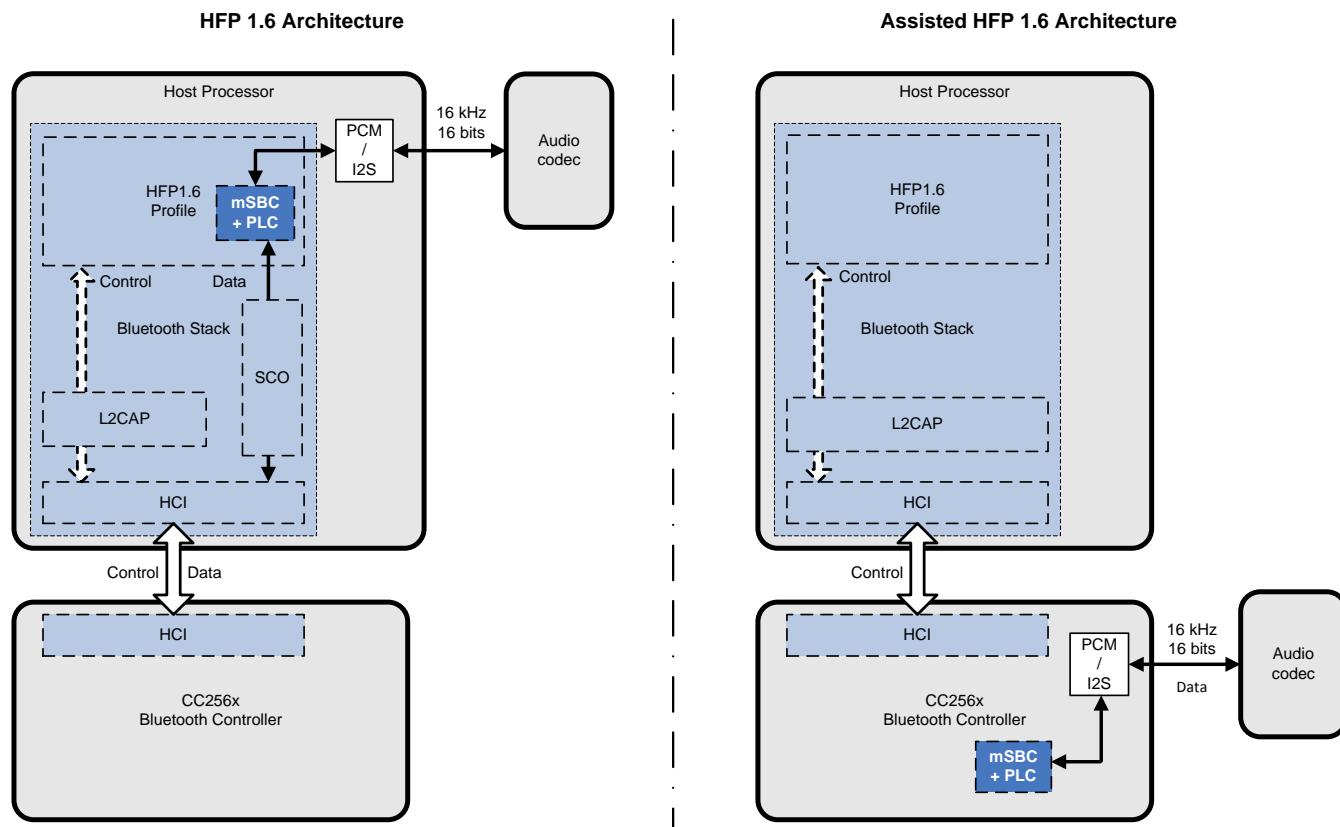
**Figure 6-14. 2-Channel Bus Timing**

#### 6.4.4 Assisted Modes

The CC2564C device contains an embedded coprocessor that can be used for multiple purposes (see [图 1-1](#)). The CC2564C device uses the coprocessor to perform the LE functionality or to execute the assisted HFP 1.6 (WBS) or assisted A2DP functions. Only one of these functions can be executed at a time because they all use the same resources (that is, the coprocessor; see [Table 3-1](#) for the modes of operation supported by each device).

This section describes the assisted HFP 1.6 (WBS) and assisted A2DP modes of operation. These modes of operation minimize host processing and power by taking advantage of the device coprocessor to perform the voice and audio SBC processing required in HFP 1.6 (WBS) and A2DP profiles. This section also compares the architecture of the assisted modes with the common implementation of the HFP 1.6 and A2DP profiles.

The assisted HFP 1.6 (WBS) and assisted A2DP modes of operation comply fully with the HFP 1.6 and A2DP Bluetooth specifications. For more information on these profiles, see the corresponding Bluetooth Profile Specification ([www.bluetooth.org/en-us/specification/adopted-specifications](http://www.bluetooth.org/en-us/specification/adopted-specifications)).


##### 6.4.4.1 Assisted HFP 1.6 (WBS)

The *HFP 1.6 Profile Specification* adds the requirement for WBS support. The WBS feature allows twice the voice quality versus legacy voice coding schemes at the same air bandwidth (64 kbps). This feature is achieved using a voice sampling rate of 16 kHz, a modified subband coding (mSBC) scheme, and a packet loss concealment (PLC) algorithm. The mSBC scheme is a modified version of the mandatory audio coding scheme used in the A2DP profile with the parameters listed in [Table 6-3](#).

**Table 6-3. mSBC Parameters**

| PARAMETER         | VALUE    |
|-------------------|----------|
| Channel mode      | Mono     |
| Sampling rate     | 16 kHz   |
| Allocation method | Loudness |
| Subbands          | 8        |
| Block length      | 15       |
| Bitpool           | 26       |

The assisted HFP 1.6 mode of operation implements this WBS feature on the embedded CC2564C coprocessor. That is, the mSBC voice coding scheme and the PLC algorithm are executed in the CC2564C coprocessor rather than in the host, thus minimizing host processing and power. One WBS connection at a time is supported, and WBS and NBS connections cannot be used simultaneously in this mode of operation. [Figure 6-15](#) shows the architecture comparison between the common implementation of the HFP 1.6 profile and the assisted HFP 1.6 solution.



Copyright © 2016, Texas Instruments Incorporated

**Figure 6-15. HFP 1.6 Architecture Versus Assisted HFP 1.6 Architecture**

For detailed information on the HFP 1.6 profile, see the *Hands-Free Profile 1.6 Specification* ([www.bluetooth.org/en-us/specification/adopted-specifications](http://www.bluetooth.org/en-us/specification/adopted-specifications)).

#### 6.4.4.2 Assisted A2DP

The advanced audio distribution profile (A2DP) enables wireless transmission of high-quality mono or stereo audio between two devices. A2DP defines two roles:

- A2DP source is the transmitter of the audio stream.
- A2DP sink is the receiver of the audio stream.

A typical use case streams music from a tablet, phone, or PC (the A2DP source) to headphones or speakers (the A2DP sink). This section describes the architecture of these roles and compares them with the corresponding assisted-A2DP architecture. To use the air bandwidth efficiently, the audio data must be compressed in a proper format. The A2DP mandates support of the SBC scheme. Other audio coding algorithms can be used; however, both Bluetooth devices must support the same coding scheme. SBC is the only coding scheme spread out in all A2DP Bluetooth devices; thus, it is the only coding scheme supported in the assisted A2DP modes. [Table 6-4](#) lists the recommended parameters for the SBC scheme in the assisted A2DP modes.

**Table 6-4. Recommended Parameters for the SBC Scheme in Assisted A2DP Modes**

| SBC<br>ENCODER<br>SETTINGS <sup>(1)</sup> | MID QUALITY |     |              |     | HIGH QUALITY |     |              |     |
|-------------------------------------------|-------------|-----|--------------|-----|--------------|-----|--------------|-----|
|                                           | MONO        |     | JOINT STEREO |     | MONO         |     | JOINT STEREO |     |
| Sampling frequency (kHz)                  | 44.1        | 48  | 44.1         | 48  | 44.1         | 48  | 44.1         | 48  |
| Bitpool value                             | 19          | 18  | 35           | 33  | 31           | 29  | 53           | 51  |
| Resulting frame length (bytes)            | 46          | 44  | 83           | 79  | 70           | 66  | 119          | 115 |
| Resulting bit rate (Kbps)                 | 127         | 132 | 229          | 237 | 193          | 198 | 328          | 345 |

(1) Other settings: Block length = 16; allocation method = loudness; subbands = 8.

The SBC scheme supports a wide variety of configurations to adjust the audio quality. [Table 6-5](#) through [Table 6-12](#) list the supported SBC capabilities in the assisted A2DP modes.

**Table 6-5. Channel Modes**

| CHANNEL MODE | STATUS    |
|--------------|-----------|
| Mono         | Supported |
| Dual channel | Supported |
| Stereo       | Supported |
| Joint stereo | Supported |

**Table 6-6. Sampling Frequency**

| SAMPLING FREQUENCY (kHz) | STATUS    |
|--------------------------|-----------|
| 16                       | Supported |
| 44.1                     | Supported |
| 48                       | Supported |

**Table 6-7. Block Length**

| BLOCK LENGTH | STATUS    |
|--------------|-----------|
| 4            | Supported |
| 8            | Supported |
| 12           | Supported |
| 16           | Supported |

**Table 6-8. Subbands**

| SUBBANDS | STATUS    |
|----------|-----------|
| 4        | Supported |
| 8        | Supported |

**Table 6-9. Allocation Method**

| ALLOCATION METHOD | STATUS    |
|-------------------|-----------|
| SNR               | Supported |
| Loudness          | Supported |

**Table 6-10. Bitpool Values**

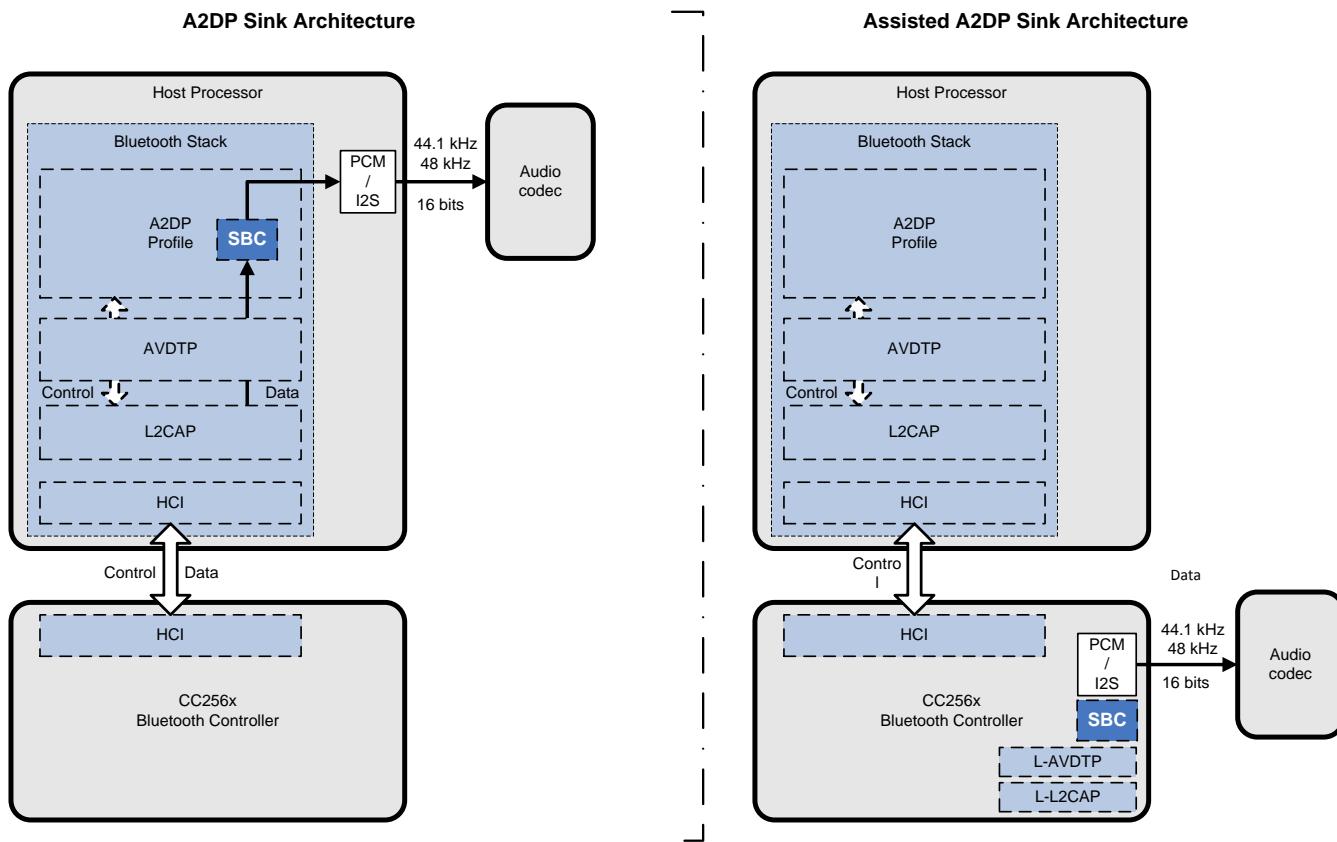
| BITPOOL RANGE              | STATUS    |
|----------------------------|-----------|
| Assisted A2DP sink: 2–54   | Supported |
| Assisted A2DP source: 2–57 | Supported |

**Table 6-11. L2CAP MTU Size**

| L2CAP MTU SIZE (BYTES)         | STATUS    |
|--------------------------------|-----------|
| Assisted A2DP sink: 260–800    | Supported |
| Assisted A2DP source: 260–1021 | Supported |

**Table 6-12. Miscellaneous Parameters**

| ITEM                    | VALUE        | STATUS        |
|-------------------------|--------------|---------------|
| A2DP content protection | Protected    | Not supported |
| AVDTP service           | Basic type   | Supported     |
| L2CAP mode              | Basic mode   | Supported     |
| L2CAP flush             | Nonflushable | Supported     |


For detailed information on the A2DP profile, see the *A2DP Profile Specification* at [Adopted Bluetooth Core Specifications](#).

#### 6.4.4.2.1 Assisted A2DP Sink

The role of the A2DP sink is to receive the audio stream in an A2DP Bluetooth connection. In this role, the A2DP layer and its underlying layers are responsible for link management and data decoding. To handle these tasks, two logic transports are defined:

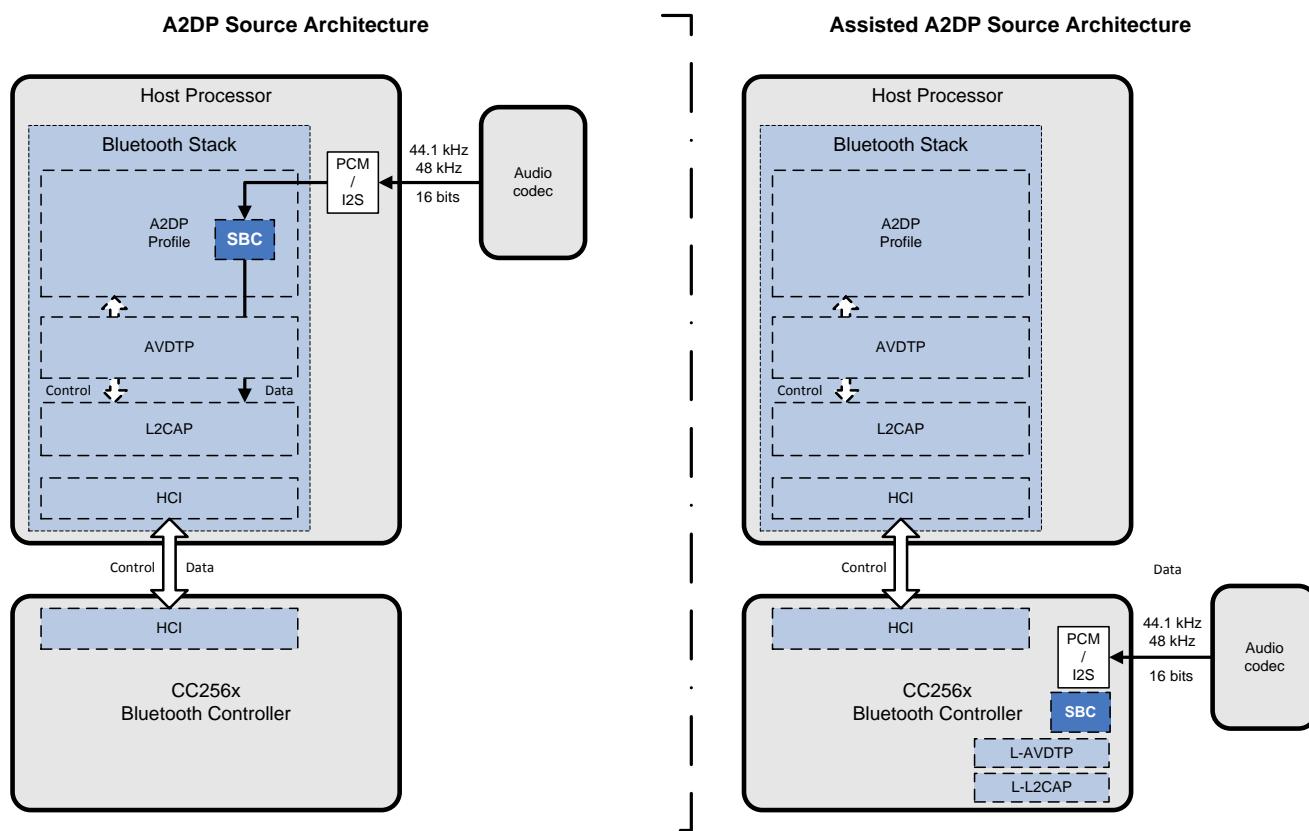
- Control and signaling logic transport
- Data packet logic transport

The assisted A2DP takes advantage of this modularity to handle the data packet logic transport in the CC2564C device. First, the assisted A2DP implements a light L2CAP layer (L-L2CAP) and light AVDTP layer (L-AVDTP) to defragment the packets. Then the assisted A2DP performs the SBC decoding on-chip to deliver raw audio data through the device PCM–I2S interface. [Figure 6-16](#) shows the comparison between a common A2DP sink architecture and the assisted A2DP sink architecture.



Copyright © 2016, Texas Instruments Incorporated

**Figure 6-16. A2DP Sink Architecture Versus Assisted A2DP Sink Architecture**


For more information on the A2DP sink role, see the *A2DP Profile Specification* at [Adopted Bluetooth Core Specifications](#).

#### 6.4.4.2.2 Assisted A2DP Source

The role of the A2DP source is to transmit the audio stream in an A2DP Bluetooth connection. In this role, the A2DP layer and its underlying layers are responsible for link management and data encoding. To handle these tasks, two logic transports are defined:

- Control and signaling logic transport
- Data packet logic transport

The assisted A2DP takes advantage of this modularity to handle the data packet logic transport in the CC2564C device. First, the assisted A2DP encodes the raw data from the CC2564C PCM-I2S interface using an on-chip SBC encoder. Then the assisted A2DP implements an L-L2CAP layer and an L-AVDTPL layer to fragment and packetize the encoded audio data. [Figure 6-17](#) shows the comparison between a common A2DP source architecture and the assisted A2DP source architecture.



Copyright © 2016, Texas Instruments Incorporated

**Figure 6-17. A2DP Source Architecture Versus Assisted A2DP Source Architecture**

For more information on the A2DP source role, see the A2DP Profile Specification at [Adopted Bluetooth Core Specifications](#).

## 6.5 Bluetooth BR and EDR Features

The CC2564C device complies with the *Bluetooth 4.2* specification up to the HCI layer (for family members and technology supported, see [Table 3-1](#)):

- Up to seven active devices
- Scatternet: Up to three piconets simultaneously, one as master and two as slaves
- Up to two SCO links on the same piconet
- Very fast AFH algorithm for asynchronous connection-oriented link (ACL) and eSCO link
- Supports typical 12-dBm TX power without an external power amplifier (PA), thus improving Bluetooth link robustness
- DRP single-ended 50- $\Omega$  I/O for easy RF interfacing
- Internal temperature detection and compensation to ensure minimal variation in RF performance over temperature
- Includes a 128-bit hardware encryption accelerator as defined by the Bluetooth specifications

- Flexible PCM and I2S digital codec interface:
  - Full flexibility of data format (linear, A-Law,  $\mu$ -Law)
  - Data width
  - Data order
  - Sampling
  - Slot positioning
  - Master and slave modes
  - High clock rates up to 15 MHz for slave mode (or 4.096 MHz for master mode)
- Support for all voice air-coding
  - CVSD
  - A-Law
  - $\mu$ -Law
  - Transparent (uncoded)
  - mSBC
- The CC2564C device provides an assisted mode for the HFP 1.6 (wideband speech [WBS]) profile or A2DP profile to reduce host processing and power.

## 6.6 Bluetooth low energy Description

The CC2564C device complies with the Bluetooth 4.2 specification up to the HCI layer (for the family members and technology supported, see [Table 3-1](#)):

- Solution optimized for proximity and sports use cases
- Supports up to 10 simultaneous connections
- Multiple sniff instances that are tightly coupled to achieve minimum power consumption
- Independent buffering for low energy, allowing large numbers of multiple connections without affecting BR or EDR performance
- Built-in coexistence and prioritization handling

---

### NOTE

The assisted modes (HFP 1.6 and A2DP) are not available when Bluetooth low energy is enabled.

---

## 6.7 Bluetooth Transport Layers

Figure 6-18 shows the Bluetooth transport layers.

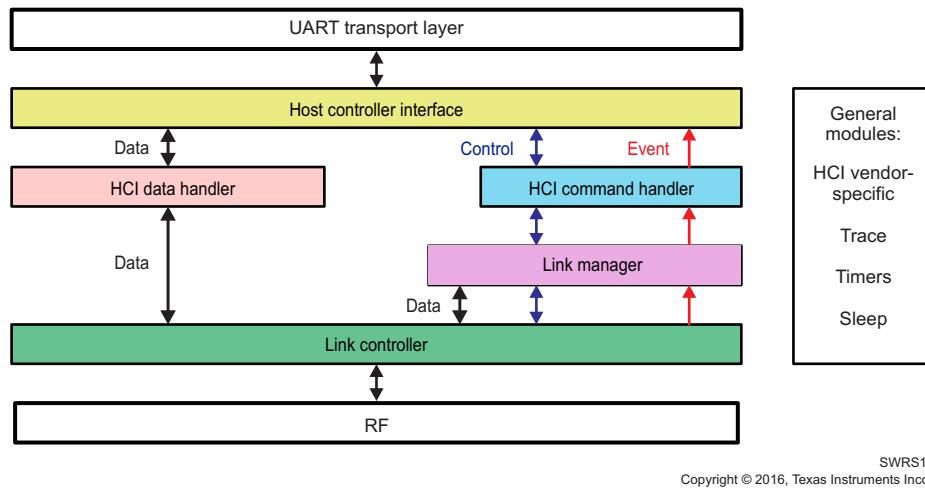



Figure 6-18. Bluetooth Transport Layers

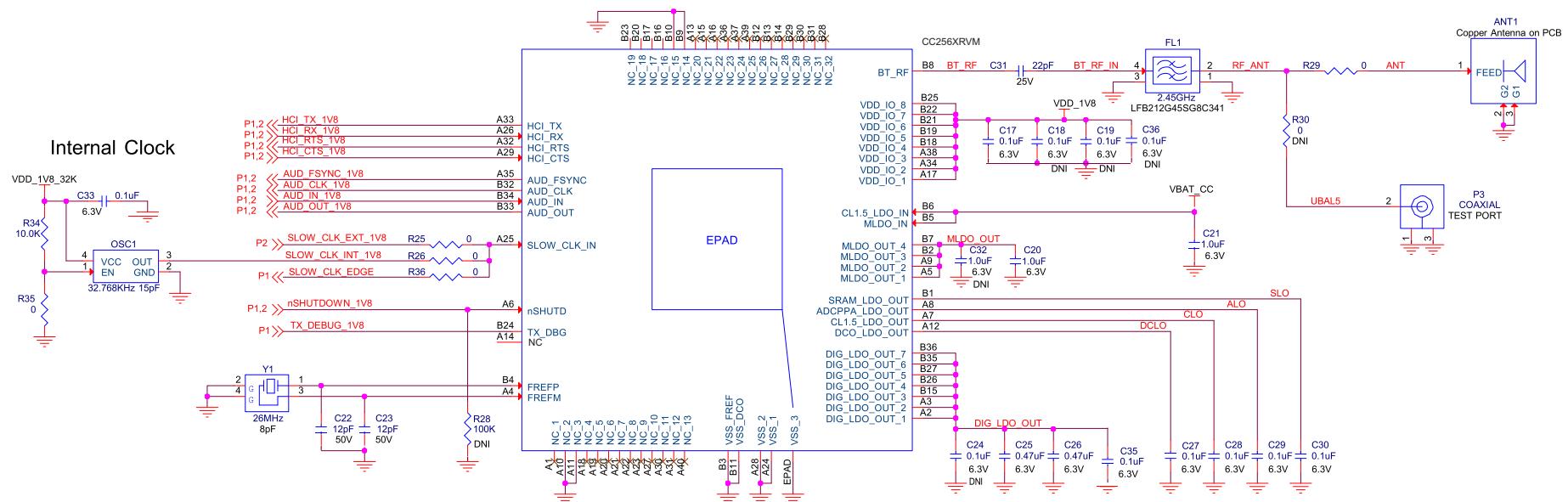
## 6.8 Changes from the CC2564B Device to the CC2564C Device

The CC2564C device includes the following changes:

- Support added for standard HCI command for WBS to replace HCI VS command sequence
  - Part of the Core Specification Addendum 2 (CSA2)
- Easy PCM interface integration when using both WBS (16 kHz) and NBS (8 kHz)
- PLC support added for NBS (8 kHz) when working at 16-kHz PCM clock
- Option added to start and stop the PCM clock as master on the PCM bus even when voice call is not active or set a timer to extend the clock after voice or audio is removed
- Link layer topology support—Acts concurrently as peripheral and central low-energy device
- AFH algorithm enhancements—Improvements to the automatic frequency hopping algorithms

## 7 Applications, Implementation, and Layout

---


### NOTE

Information in the following Applications section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

---

### 7.1 Reference Design Schematics and BOM for Power and Radio Connections

Figure 7-1 shows the reference schematics for the VQFN-MR package. For complete schematics and PCB layout guidelines, contact your TI representative.



## Figure 7-1. Reference Schematics

Table 7-1 lists the BOM for the VQFN-MR package.

**Table 7-1. Bill of Materials**

| QTY | REF. DES. | VALUE            | DESCRIPTION                                                | MANUFACTURER                     | MANUFACTURER PART NUMBER            | ALT PART                  | NOTES                  |
|-----|-----------|------------------|------------------------------------------------------------|----------------------------------|-------------------------------------|---------------------------|------------------------|
| 1   | ANT1      | NA               | ANT_IIFA_CC2420_32mil_MIR                                  | NA                               | IIFA_CC2420                         | Chip antenna              | Copper antenna on PCB  |
| 6   | Capacitor | 0.1 $\mu$ F      | Capacitor, ceramic; 0.1- $\mu$ F 6.3-V 10% X7R 0402        | Kemet                            | C0402C104K9RACTU                    |                           |                        |
| 2   | Capacitor | 1.0 $\mu$ F      | Capacitor, ceramic; 1.0- $\mu$ F 6.3-V 10% X5R 0402        | Taiyo Yuden                      | JMK105BJ105KV-F                     |                           |                        |
| 2   | Capacitor | 12 pF            | Capacitor, ceramic; 12 pF 6.3-V X5R 10% 0402               | Murata Electronics               | GRM1555C1H120JZ01D                  |                           |                        |
| 2   | Capacitor | 0.47 $\mu$ F     | Capacitor, ceramic; 0.47- $\mu$ F 6.3-V X5R $\pm$ 10% 0402 | Taiyo Yuden                      | JMK105BJ474KV-F                     |                           |                        |
| 1   | FL1       | 2.45 GHz         | Filter, ceramic bandpass, 2.45-GHz SMD                     | Murata Electronics               | LFB212G45SG8C341                    | DEA162450 BT_1260B3 (TDK) | Place brown marking up |
| 1   | OSC1      | 32.768 kHz 15 pF | Oscillator; 32.768-kHz 15-pF 1.5-V 3.3-V SMD               | Abracor Corporation              | ASH7K-32.768KHZ-T                   |                           | Optional               |
| 1   | U5        | CC2564CRVM       | CC2564C dual-mode Bluetooth controller                     | Texas Instruments                | CC2564CRVM                          |                           |                        |
| 1   | Y1        | 26 MHz           | Crystal, 26 MHz                                            | NDK                              | NX2016SA                            | TZ1325D (Tai-Saw TST)     |                        |
| 1   | C31       | 22 pF            | Capacitor, ceramic; 22-pF 25-V 5% NP0 0201                 | Murata Electronics North America | GRM0335C1E220JD01D (EXS00A-CS06025) |                           |                        |

## 7.2 PCB Layout Guidelines

This section describes the PCB guidelines to speed up the PCB design using the CC256x VQFN device. Following these guidelines ensures that the design will pass Bluetooth SIG certification and also minimizes risk for regulatory certifications including FCC, ETSI, and CE. For more information, see [CC256x QFN PCB Guidelines](#).

### 7.2.1 General PCB Guidelines

General PCB guidelines follow:

- You must verify the recommended PCB stackup in the PCB Design guidelines.
- You must verify the dimensions of the QFN PCB footprint in the *QFN Package Information* section of [CC256x QFN PCB Guidelines](#) and in [Section 6](#).
- The decoupling capacitors must be as close as possible to the QFN device.

### 7.2.2 Power Supply Guidelines

Guidelines for the power supply follow:

- The trace width must be at least 10 mils for the VBAT and VIO traces.
- The length of the traces must be as short as possible (pin to pin).
- Decoupling capacitors must be as close as possible to the QFN device:
  - The MLDO\_IN capacitor must be close to pin B5.
  - The VDD\_IO capacitor must be close to pins B18 and A17.

Guidelines for the LDOs follow:

- The trace width for the trace between x\_LDO\_x pins and decoupling capacitors is at least 5 mils; where possible, the recommended trace width is 10 mils.
- Place the decoupling capacitor of MLDO\_OUT (C20) as close as possible to pin A5.
- These capacitors must close to the following pins:
  - The DIG\_LDO\_OUT capacitor must be close to ball B15.
  - The DIG\_LDO\_OUT capacitor must be close to ball B27.
  - The DIG\_LDO\_OUT capacitor must be close to ball B36.
- The DIG\_LDO\_OUT capacitor connected to ball B36 must be isolated from the top layer GND (see the *Low-Dropout Capacitors* section in [CC256x QFN PCB Guidelines](#)).
- The decoupling capacitors for SRAM, ADCPPA, and CL1.5 LDO\_OUT must be as close as possible to their corresponding pins on the CC256x device.
- Place the device and capacitors together on the top side.
- The ground connection of each capacitor must be directly connected to solid ground layer (layer 2).
- The capacitor that is directly connected to pin A12 should be close to the device.
- Connect the DCO\_LDO\_OUT capacitor isolated from layer 1 ground directly to layer 2 solid ground.

Guidelines for the ground layer follow:

- Layer 2 must be a solid ground plane.
- Isolate VSS\_FREF from ground on the top layer and route it directly to ground on the second layer (see the *Key VSS Ball* section in [CC256x QFN PCB Guidelines](#)).
- Isolate VSS\_DCO (ball B11) from ground. Include VSS\_DCO in the illustration of the DCO\_LDO\_OUT capacitor (see the *DCO\_LDO\_OUT* section in [CC256x QFN PCB Guidelines](#)).
- A minimum of 13 vias on the thermal pad are required to increase ground coupling.
- Connect VSS\_FREF (ball B3) directly to solid ground, not to the thermal pad.

### 7.2.3 User Interfaces

Guidelines for the UART follow:

- The trace width for the UART must be at least 5 mils.
- Run the four UART lines as a bus interface.
- Determine if clocks, DC supply, or RF traces are not near these UART traces.
- The ground plane on layer 2 is solid below these lines and there is ground around these traces on the top layer.

Guidelines for the PCM follow:

- The trace width for the PCM must be at least 5 mils.
- Run the four PCM lines as a bus interface and approximately the same length.
- Determine if clocks, DC supply, RF traces, and LDO capacitors are not near these PCM traces.
- The ground plane on layer 2 is solid below these lines and there is ground around these traces on the top layer.
- Guidelines for TX\_DBG follow:
- Check for an accessible test point on the board from TX\_DBG pin B24.

### 7.2.4 Clock Interfaces

Guidelines for the slow clock follow:

- The trace width for the slow clock must be at least 5 mils.
- The signal lines for the slow clock must be as short as possible.
- The ground plane on layer 2 is solid below these lines and there is ground around these traces on the top layer.

Guidelines for the fast clock follow:

- The trace width for the fast clock must be at least 5 mils.
- Ensure that crystal tuning capacitors are close to crystal pads.
- Make both traces (XTALM and XTALP) parallel as much as possible and approximately the same length.
- The ground plane on layer 2 is solid below these lines and there is ground around these traces on the top layer.

### 7.2.5 RF Interface

Guidelines for the RF Interface follow:

- TI recommends using an RF shield (not mandatory).
- Verify that RF traces are routed on the top layer and matched at  $50\ \Omega$  with reference to ground.
- Route the RF line between these NC pins:
  - NC\_2 (A10)
  - NC\_3 (A11)
  - NC\_14 (B9)
  - NC\_15 (B10)

These NC pins are grounded for better RF isolation.

---

#### NOTE

These pins are NC at the chip level, but TI recommends grounding them on the PCB layout for better RF isolation.

---

- Ensure the area underneath the BPF pads is grounded on layer 1 and layer 2.
- Keep RF\_IN and RF\_OUT of the BPF pads clear of any ground fill (see the *RF Trace* section in [CC256x QFN PCB Guidelines](#)).
- Follow guidelines specified in the vendor-specific antenna design guides (including placement of antenna).
- Follow guidelines specified in the vendor-specific BPF design guides.
- Verify that the Bluetooth RF trace is a  $50\text{-}\Omega$ , impedance-controlled trace with reference to solid ground.
- Ensure that the RF trace length is as short as possible.

## 8 器件和文档支持

### 8.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

### 8.2 工具与软件

设计套件与评估模块

**CC256x Bluetooth® 硬件评估工具** 这款直观的用户友好型 TI 工具用于评估 TI 蓝牙芯片，能够以完整软件包的形式从 TI 网站下载。具体而言，该工具用于通过服务包 (SP) 配置蓝牙芯片属性，同时支持测试 RF 性能。

有关开发支持工具的完整列表，请参见 TI [CC256x wiki](#)。有关定价和购买信息，请联系最近的 TI 销售办事处或授权分销商。

### 8.3 器件命名规则

为了标明产品开发周期的阶段，TI 为所有部件号分配了前缀。这些前缀代表了产品开发的发展阶段，即从工程原型直到完全合格的生产器件。

器件开发进化流程：

**X** 试验器件不一定代表最终器件的电气规范标准并且不可使用生产组装流程。

**P** 原型器件不一定是最终芯片模型并且不一定符合最终电气标准规范。

**无** 完全合格的芯片模型的生产版本。

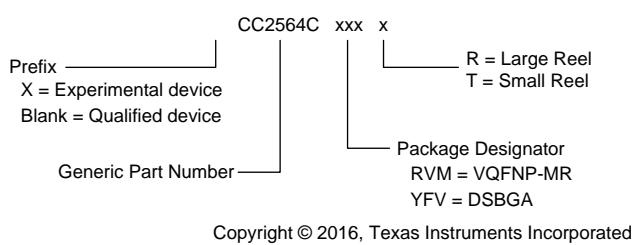
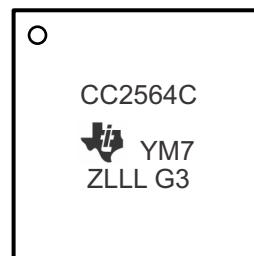




图 8-1. CC2564C 器件命名规则



**Y** = Last digit of the year  
**M** = Month in hex number, 1-C for Jan-Dec  
**7** = Primary site code for ANM  
**Z** = Secondary site code for ANM  
**LLL** = Assembly lot code  
**O** = Pin 1 indicator

图 8-2. 芯片标记 (VQFN-MR 封装)

### 8.4 Community Resources

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范和标准且不一定反映 TI 的观点；请见 TI 的[使用条款](#)。

**TI E2E™ Online Community** The TI engineer-to-engineer (E2E) community was created to foster collaboration among engineers. At [e2e.ti.com](http://e2e.ti.com), you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**TI Embedded Processors Wiki** Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

## 8.5 商标

E2E is a trademark of Texas Instruments.

ARM7TDMI is a registered trademark of ARM Limited.

由 is a registered trademark of Apple, Inc.

蓝牙 is a registered trademark of Bluetooth SIG, Inc.

All other trademarks are the property of their respective owners.

## 8.6 静电放电警告



ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序，可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级，大至整个器件故障。精密的集成电路可能更容易受到损坏，这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

## 8.7 Glossary

**TI Glossary** This glossary lists and explains terms, acronyms, and definitions.

## 9 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本，请查阅左侧的导航栏

## PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package Drawing | Pins | Package Qty | Eco Plan<br>(2)         | Lead/Ball Finish<br>(6) | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5) | Samples                                                                         |
|------------------|---------------|--------------|-----------------|------|-------------|-------------------------|-------------------------|----------------------|--------------|-------------------------|---------------------------------------------------------------------------------|
| CC2564CRVMR      | ACTIVE        | VQFNP-MR     | RVM             | 76   | 2500        | Green (RoHS & no Sb/Br) | CU SN                   | Level-3-260C-168 HR  | -40 to 85    | CC2564C                 | <span style="background-color: red; color: white; padding: 2px;">Samples</span> |
| CC2564CRVMT      | ACTIVE        | VQFNP-MR     | RVM             | 76   | 250         | Green (RoHS & no Sb/Br) | CU SN                   | Level-3-260C-168 HR  | -40 to 85    | CC2564C                 | <span style="background-color: red; color: white; padding: 2px;">Samples</span> |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

**Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

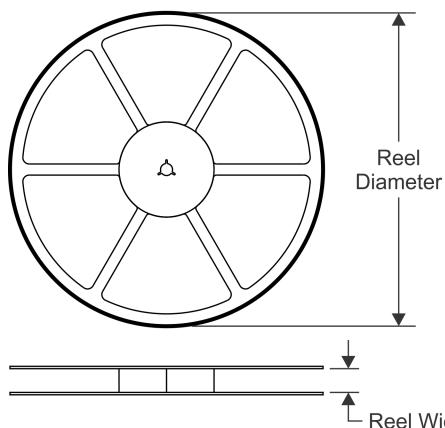
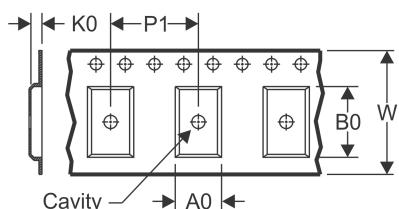
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

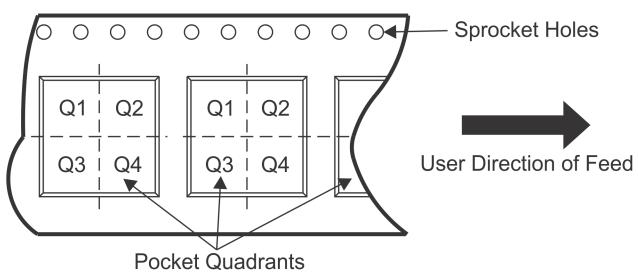
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.



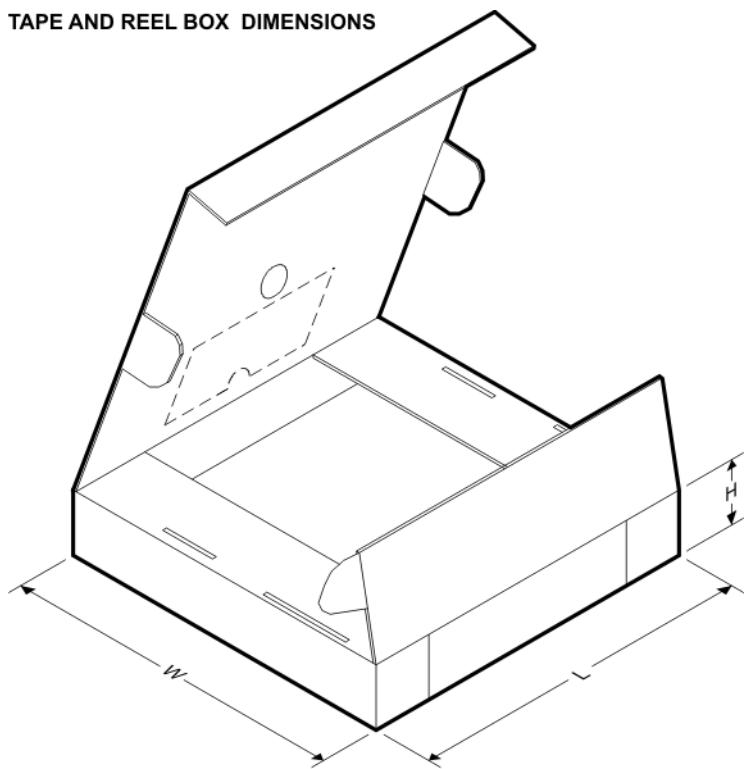


www.ti.com

## PACKAGE OPTION ADDENDUM


9-Jan-2017

---

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


**TAPE AND REEL INFORMATION**
**REEL DIMENSIONS**

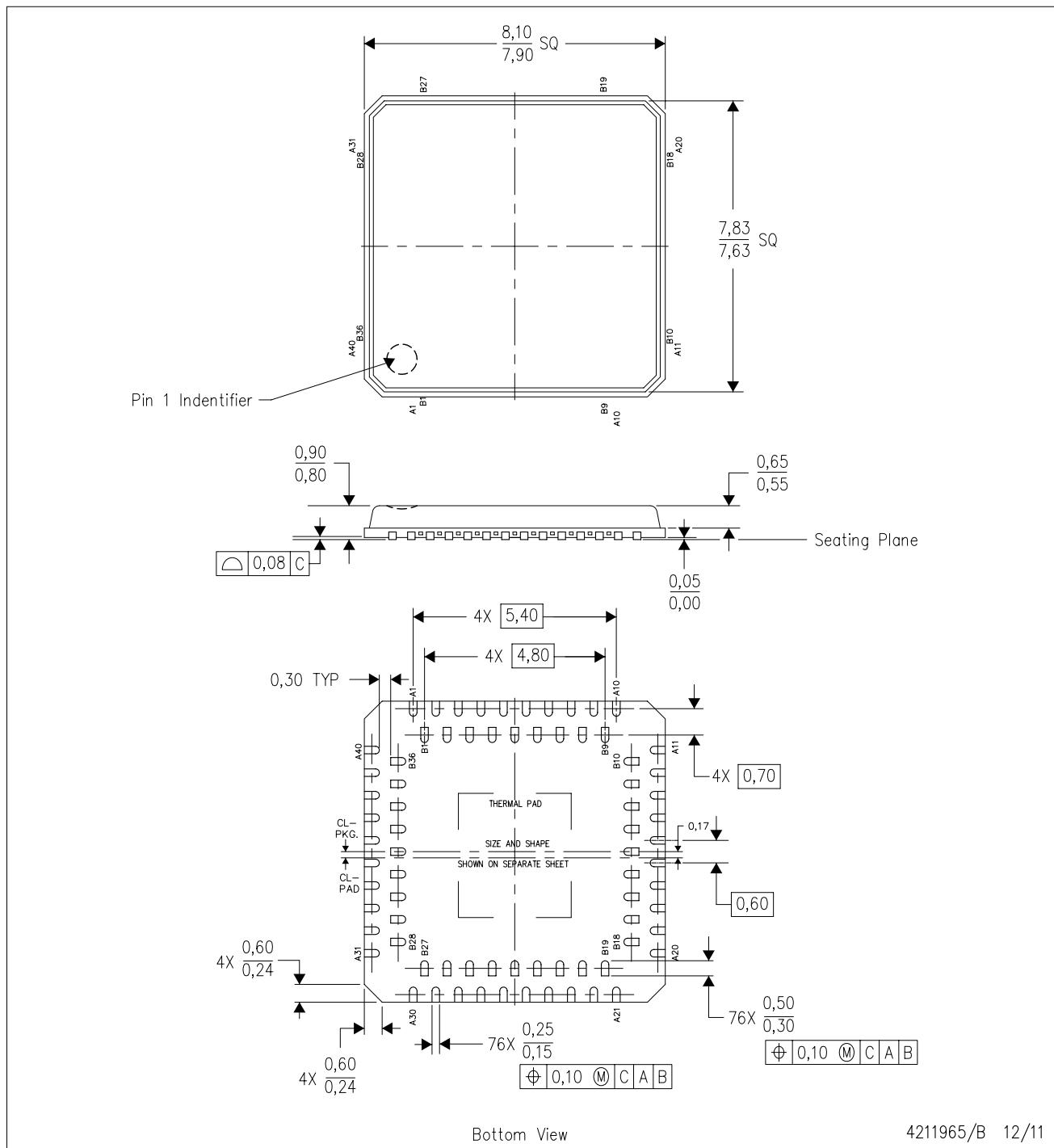
**TAPE DIMENSIONS**


|    |                                                           |
|----|-----------------------------------------------------------|
| A0 | Dimension designed to accommodate the component width     |
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

**QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**


\*All dimensions are nominal

| Device      | Package Type | Package Drawing | Pins | SPQ | Reel Diameter (mm) | Reel Width W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1 (mm) | W (mm) | Pin1 Quadrant |
|-------------|--------------|-----------------|------|-----|--------------------|--------------------|---------|---------|---------|---------|--------|---------------|
| CC2564CRVMT | VQFNP-MR     | RVM             | 76   | 250 | 180.0              | 16.4               | 8.35    | 8.35    | 1.7     | 12.0    | 16.0   | Q2            |


**TAPE AND REEL BOX DIMENSIONS**

\*All dimensions are nominal

| Device      | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |
|-------------|--------------|-----------------|------|-----|-------------|------------|-------------|
| CC2564CRVMT | VQFNP-MR     | RVM             | 76   | 250 | 213.0       | 191.0      | 55.0        |

RVM (S-PVQFN-N76)

PLASTIC QUAD FLATPACK NO-LEAD



NOTES:

- All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.
- This drawing is subject to change without notice.
- QFN (Quad Flatpack No-Lead) Package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance.
- See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

## 重要声明

德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改，并不再按最新发布的 JESD48 提供任何产品和服务。买方在下订单前应获取最新的相关信息，并验证这些信息是否完整且是最新的。

TI 公布的半导体产品销售条款 (<http://www.ti.com/sc/docs/stdterms.htm>) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其他条款可能适用于其他类型 TI 产品及服务的使用或销售。

复制 TI 数据表上 TI 信息的重要部分时，不得变更该等信息，且必须随附所有相关保证、条件、限制和通知，否则不得复制。TI 对该等复制文件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时，如果存在对产品或服务参数的虚假陈述，则会失去相关 TI 产品或服务的明示或暗示保证，且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。

买方和在系统中整合 TI 产品的其他开发人员（总称“设计人员”）理解并同意，设计人员在设计应用时应自行实施独立的分析、评价和判断，且应全权负责并确保应用的安全性，及设计人员的应用（包括应用中使用的所有 TI 产品）应符合所有适用的法律法规及其他相关要求。设计人员就自己设计的应用声明，其具备制订和实施下列保障措施所需的一切必要专业知识，能够（1）预见故障的危险后果，（2）监视故障及其后果，以及（3）降低可能导致危险的故障几率并采取适当措施。设计人员同意，在使用或分发包含 TI 产品的任何应用前，将彻底测试该等应用和该等应用中所用 TI 产品的功能。

TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息，包括但不限于与评估模块有关的参考设计和材料（总称“TI 资源”），旨在帮助设计人员开发整合了 TI 产品的应用，如果设计人员（个人，或如果是代表公司，则为设计人员的公司）以任何方式下载、访问或使用任何特定的 TI 资源，即表示其同意仅为该等目标，按照本通知的条款使用任何特定 TI 资源。

TI 所提供的 TI 资源，并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明；也未导致 TI 承担任何额外的义务或责任。TI 有权对 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外，TI 未进行任何其他测试。

设计人员只有在开发包含该等 TI 资源所列 TI 产品的应用时，才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他法理授予您任何 TI 知识产权的任何其他明示或默示的许可，也未授予您 TI 或第三方的任何技术或知识产权的许可，该等产权包括但不限于任何专利权、版权、屏蔽作品权或与使用 TI 产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许可。

TI 资源系“按原样”提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述，包括但不限于对准确性或完整性、产权保证、无屡发故障保证，以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任任何申索，包括但不限于因组合产品所致或与之有关的申索，也不为或对设计人员进行辩护或赔偿，即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿，不管 TI 是否获悉可能会产生上述损害赔偿，TI概不负责。

除 TI 已明确指出特定产品已达到特定行业标准（例如 ISO/TS 16949 和 ISO 26262）的要求外，TI 不对未达到任何该等行业标准要求而承担任何责任。

如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准，则该等产品旨在帮助客户设计和创作自己的符合相关功能安全标准和要求的应用。在应用内使用产品的行为本身不会配有任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和标准。设计人员不可将任何 TI 产品用于关乎性命的医疗设备，除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是指出现故障会导致严重身体伤害或死亡的医疗设备（例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设备）。此类设备包括但不限于，美国食品药品监督管理局认定为 III 类设备的设备，以及在美国以外的其他国家或地区认定为同等类别设备的所有医疗设备。

TI 可能明确指定某些产品具备某些特定资格（例如 Q100、军用级或增强型产品）。设计人员同意，其具备一切必要专业知识，可以为自己的应用选择适合的产品，并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。

设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码：200122  
Copyright © 2017 德州仪器半导体技术（上海）有限公司