www.ti.com

SCAS846C-JULY 2007-REVISED MARCH 2009

28-BIT TO 56-BIT REGISTERED BUFFER WITH ADDRESS-PARITY TEST

FEATURES

- Member of the Texas Instruments Widebus+™ Family
- Pinout Optimizes DDR2 DIMM PCB Layout
- 1-to-2 Outputs Support Stacked DDR2 DIMMs
- One Device Per DIMM Required
- Chip-Select Inputs Gate the Data Outputs from Changing State and Minimizes System Power Consumption
- Output Edge-Control Circuitry Minimizes Switching Noise in an Unterminated Line
- Supports SSTL_18 Data Inputs
- Differential Clock (CLK and CLK) Inputs

- Supports LVCMOS Switching Levels on the Chip-Select Gate-Enable, Control, and RESET Inputs
- Checks Parity on DIMM-Independent Data Inputs
- Supports industrial temperature range (-40°C to 85°C)
- RESET Input Disables Differential Input Receivers, Resets All Registers, and Forces All Outputs Low, Except QERR

APPLICATIONS

Heavily loaded DDR2 registered DIMM

DESCRIPTION

This 28-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V V_{CC} operation. One device per DIMM is required to drive up to 18 stacked SDRAM loads or two devices per DIMM are required to drive up to 36 stacked SDRAM loads.

All inputs are SSTL_18, except the chip-select gate-enable (CSGEN), control (C), and reset (RESET) inputs, which are LVCMOS. All outputs are edge-controlled circuits optimized for unterminated DIMM loads, and meet SSTL_18 specifications, except the open-drain error (QERR) output.

The 74SSTUB32868A operates from a differential clock (CLK and CLK). Data are registered at the crossing of CLK going high and CLK going low.

The 74SSTUB32868A accepts a parity bit from the memory controller on the parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs (D1-D5, D7, D9-D12, D17-D28 when C=0; or D1-D12, D17-D20, D22, D24-D28 when C=1) and indicates whether a parity error has occurred on the open-drain \overline{QERR} pin (active low). The convention is even parity; that is, valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit. To calculate parity, all DIMM-independent D-inputs must be tied to a known logic state.

The 74SSTUB32868A includes a parity checking function. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of the device. Two clock cycles after the data are registered, the corresponding QERR signal is generated.

ORDERING INFORMATION(1)

T _A	PACK	PACKAGE ⁽²⁾		TOP-SIDE MARKING
-40°C to +85°C	TFBGA-ZRH	TFBGA-ZRH Tape and Reel		SB868A

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus+ is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

⁽²⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONTINUED)

If an error occurs and the QERR output is driven low, it stays latched low for a minimum of two clock cycles or until RESET is driven low. If two or more consecutive parity errors occur, the QERR output is driven low and latched low for a clock duration equal to the parity error duration or until RESET is driven low. If a parity error occurs on the clock cycle before the device enters the low-power mode (LPM) and the QERR output is driven low, it stays latched low for the LPM duration plus two clock cycles or until RESET is driven low. The DIMM-dependent signals (DCKE0, DCKE1, DODT0, DODT1, DCS0 and DCS1) are not included in the parity check computation.

The C input controls the pinout configuration from register-A configuration (when low) to register-B configuration (when high). The C input should not be switched during normal operation. It should be hard-wired to a valid low or high level to configure the register in the desired mode.

In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with respect to CLK and CLK. Therefore, no timing relationship can be ensured between the two. When entering reset, the register is cleared and the data outputs is driven low quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register becomes active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the low-to-high transition of RESET until the input receivers are fully enabled, the design of the 74SSTUB32868A must ensure that the outputs remain low, thus ensuring no glitches on the output.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

The device supports low-power standby operation. When \overline{RESET} is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (V_{REF}) inputs are allowed. In addition, when RESET is low, all registers are reset and all outputs are forced low except QERR. The LVCMOS RESET and C inputs always must be held at a valid logic high or low level.

The device also supports low-power active operation by monitoring both system chip select ($\overline{DCS0}$ and $\overline{DCS1}$) and CSGEN inputs and will gate the Qn outputs from changing states when CSGEN, $\overline{DCS0}$, and $\overline{DCS1}$ inputs are high. If CSGEN, $\overline{DCS0}$ or $\overline{DCS1}$ input is low, the Qn outputs function normally. Also, if both $\overline{DCS0}$ and $\overline{DCS1}$ inputs are high, the device will gate the \overline{QERR} output from changing states. If either $\overline{DCS0}$ or $\overline{DCS1}$ is low, the QERR output functions normally. The \overline{RESET} input has priority over the $\overline{DCS0}$ and $\overline{DCS1}$ control and when driven low forces the Qn outputs low, and the \overline{QERR} output high. If the chip-select control functionality is not desired, then the CSGEN input can be hard-wired to ground, in which case, the setup-time requirement for $\overline{DCS0}$ and $\overline{DCS1}$ would be the same as for the other D data inputs. To control the low-power mode with $\overline{DCS0}$ and $\overline{DCS1}$ only, then the CSGEN input should be pulled up to V_{CC} through a pullup resistor.

The two V_{REF} pins (A5 and AB5) are connected together internally by approximately 150 Ω . However, it is necessary to connect only one of the two V_{REF} pins to the external V_{REF} power supply. An unused V_{REF} pin should be terminated with a V_{REF} coupling capacitor.

Submit Documentation Feedback

www.ti.com

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted)(1)

			VALUE	UNIT
V_{CC}	Supply voltage range		-0.5 to 2.5	V
VI	Input voltage range (see notes (2) and (3))		-0.5 to V _{CC} + 0.5	V
Vo	Output voltage range (see notes (2) and (3))	-0.5 to V _{CC} + 0.5	V	
I _{IK}	Input clamp current (V _I < 0, V _I > V _{CC})	±50	mA	
I _{OK}	Output clamp current (V _I < 0, V _O > V _{CC})	±50	mA	
Io	Continuous output current (V _O = 0 to V _{CC})		±50	mA
I _{CC}	Continuous current through each V _{CC} or GND		±100	mA
0	Thermal resistance, junction-to-ambient (see note (4))	No airflow	46.8	
$R_{\theta JA}$	merman resistance, junction-to-ambient (see note 17)	Airflow 200 ft/min	42.9	k/W
$R_{\theta JC}$	Thermal resistance, junction-to-case (see note ⁽⁴⁾)	No airflow	17.9	
T _{stg}	Storage temperature range		-65 to +150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	NOM	MAX	UNIT
SUPPLY	Y VOLTAGES, CURRENTS AND	TEMPERATURE RANGE			1	
V _{CC}	Supply voltage		1.7		1.9	V
V_{REF}	Reference voltage		0.49 x V _{CC}	0.5 x V _{CC}	0.51 x V _{CC}	V
V _{TT}	Termination voltage		V _{REF} - 40 mV	V_{REF}	V _{REF} + 40 mV	V
VI	Input voltage		0		V _{CC}	V
V _{IH}	AC high-level input voltage	Data inputs, DCSn, PAR_IN	V _{REF} + 250 mV			V
V _{IL}	AC low-level input voltage	Data inputs, DCSn, PAR_IN			V _{REF} - 250 mV	V
V _{IH}	DC high-level input voltage	Data inputs, DCSn, PAR_IN	V _{REF} + 125 mV			V
V _{IL}	DC low-level input voltage	Data inputs, DCSn, PAR_IN			V _{REF} - 125 mV	V
V _{IH}	High-level input voltage	RESET, CSGEN, C	0.65 × V _{CC}			V
V _{IL}	Low-level input voltage	RESET, CSGEN, C			0.35 × V _{CC}	V
V _{ICR}	Common-mode input voltage range	CLK, CLK	0.675		1.125	V
V _{I(PP)}	Peak-to-peak input voltage	CLK, CLK	0.6			V
I _{OH}	High-level output current	Q outputs			-12	mA
1	Low lovel output ourrest	Q outputs			12	m ^
I _{OL}	Low-level output current	QERR output	30			mA
T _A	Operating free-air temperature		-40		85	°C

⁽¹⁾ The RESET and Cn inputs of the device must be held at valid logic voltage levels (not floating) to ensure proper device operation. The differential inputs must not be floating unless RESET is low. See the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004 (available for download at www.ti.com.

Copyright © 2007–2009, Texas Instruments Incorporated

⁽²⁾ The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

³⁾ This value is limited to 2.5 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITION		V _{CC}	MIN	TYP ⁽¹⁾	MAX	UNIT
V	O outputo	I _{OH} = -100 μA		1.7 V to 1.9 V	V _{CC} - 0.2			V
V_{OH}	Q outputs	I _{OH} = -8 mA		1.7 V	1.2			V
	Ocutouto	$I_{OL} = 100 \mu A$		1.7 V to 1.9 V			0.2	
V_{OL}	Q outputs	I _{OL} = 8 mA		1.7 V			0.5	V
	QERR	I _{OL} = 25 mA		1.7 V			0.5	
	PAR_IN	V _I = GND		1.9 V			-5	
I	PAR_IN	$V_I = V_{CC}$					25	μΑ
	All other inputs (2)	$V_I = V_{CC}$ or GND					±5	
loz	QERR outputs	V _O = V _{CC} or GND		1.9 V			±10	μΑ
	Static standby ⁽³⁾	RESET = GND					200 ⁽³⁾	μΑ
I _{CC}	Static operating	$\overline{\text{RESET}} = V_{CC}, VI = V_{IH(AC)} \text{ or } V_{IL(AC)}$	I _O = 0	1.9 V			80	mA
	Dynamic operating clock only	V _{IL(AC)} ,CLK and CLK switching				64		μΑ/MHz
I _{CC(D)}		I _O = 0	1.8 V		37		μΑ/clock MHz/ D inputs	
	Chip-select-enabled low-power active mode – clock only	$\overline{\text{RESET}} = \text{V}_{\text{CC}}, \ \text{VI} = \text{V}_{\text{IH}(\text{AC})} \text{ or} \\ \text{V}_{\text{IL}(\text{AC})}, \text{CLK} \text{ and } \overline{\text{CLK}} \text{ switching} \\ 50\% \text{ duty cycle}$				68		μA/MHz
Chip-select-enabled low-power active mode	$\overline{\text{RESET}} = \text{V}_{\text{CC}}, \text{V}_{\text{L}} = \text{V}_{\text{IH}(\text{AC})} \text{ or } \\ \text{V}_{\text{L}(\text{AC})}, \text{CLK and CLK switching } \\ 50\% \text{ duty cycle, One data input switching at one half clock } \\ \text{frequency, 50% duty cycle} \\$	I _O = 0	1.8 V		2.7		μΑ/clock MHz/ D inputs	
	Data inputs, DCSn, PAR_IN, CSGEN	$V_I = V_{REF} \pm 250 \text{ mV}$		40.74	2	2.5	3	_
C _I	CLK, CLK	$V_{ICR} = 0.9 \text{ V}, V_{I(PP)} = 600 \text{ mV}$		1.8 V	2		3	pF
	RESET	V _I = V _{CC} or GND				4		

Submit Documentation Feedback

 ⁽¹⁾ All typical values are at V_{CC} = 1.8 V, T_A = +25°C.
 (2) Each V_{REF} pin (A5 or AB5) should be tested independently, with the other (untested) pin open.
 (3) The maximum static standby current I_{CC} is 100μA if the device is exposed to commercial temperature range (0°C to 70°C) only. For industrial temperature range (-40°C to 85°C) static I_{CC} is 200μA.

www.ti.com

PACKAGE Terminal Assignment for Register-A (C = 0) (TOP VIEW) 3 4 5 1 2 3 4 5 6 7 8 1 2 7 8 С **GND** V_{REF} GND Q₁B Α D₂ **D1** Q1A 000000000 V_{CC} V_{CC} V_{CC} V_{CC} Q2B В D4 D3 Q2A 000000000В D6 00000000 С С D5 **GND GND GND GND** Q3A Q3B (DCKE1) 000000000D D8 V_{CC} V_{CC} v_{cc} v_{cc} Q4A Q4B D D7 (DCKE0) 00000000 Ε Q6A **GND** GND 000000000Ε D9 GND **GND** Q5A Q5B F (QCKE1A) 00000000 G Q8A Q6B Q7A V_{CC} v_{cc} v_{cc} v_{cc} F D10 (QCKE0A) (QCKE1B) 00000000 н 00000000 D11 Q10A GND **GND GND GND** Q7B G Q9A J 00000000 Q8B Κ v_{cc} v_{cc} v_{cc} Q12A v_{cc} Q11A Н **D12** (QCKE0B) 000000000L D13 Q13A Q10B GND **GND** GND **GND** Q9B 00000000 J M (DCS1) (QCS1A) 00000000 N D14 Q14A Κ V_{CC} V_{CC} V_{CC} V_{CC} **Q12B** Q11B (DCS0) (QCS0A) Ρ 00000000 **Q14B** Q13B PAR IN R 000000000L CLK **CSGEN GND** GND **GND** (QCS0B) (QCS1B) 00000000 Т Q15B Q16B **QERR** V_{CC} v_{cc} v_{cc} M CLK RESET (QODT0B) (QODT1B) 000000000U D15 Q15A 00000000 ٧ Ν GND **GND** GND **GND Q17B** Q18B (DODT0) (QODT0A) w 00000000 D16 Q16A v_{cc} v_{cc} Р v_{cc} v_{cc} Q19B **Q20B** Υ 000000000(DODT1) (QODT1A) 00000000 GND GND GND GND R D17 Q17A Q18A **Q21B** AA AΒ 00000000Т v_{cc} V_{CC} v_{cc} V_{CC} D18 Q19A **Q20A Q22B** U D19 Q21A GND **GND GND** GND Q22A Q23B v_{cc} V_{CC} V_{CC} V_{CC} ٧ D20 Q23A Q24A Q24B W **D21 D22 GND GND GND GND** Q25A Q25B v_{cc} v_{cc} v_{cc} V_{CC} Q26A Q26B Υ **D23** D24 D25 D26 GND **GND GND** GND Q27A **Q27B** AA

V_{CC}

NC

V_{REF}

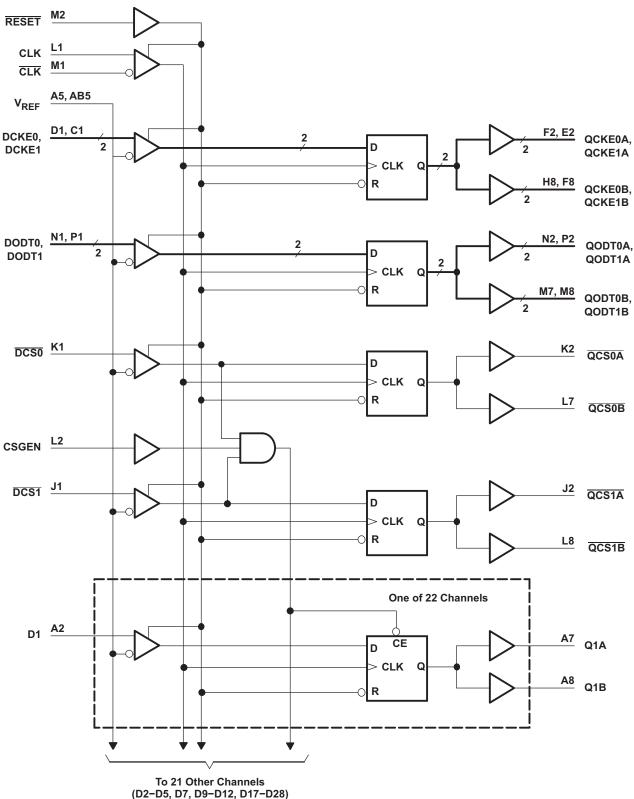
Vcc

Q28A

Q28B

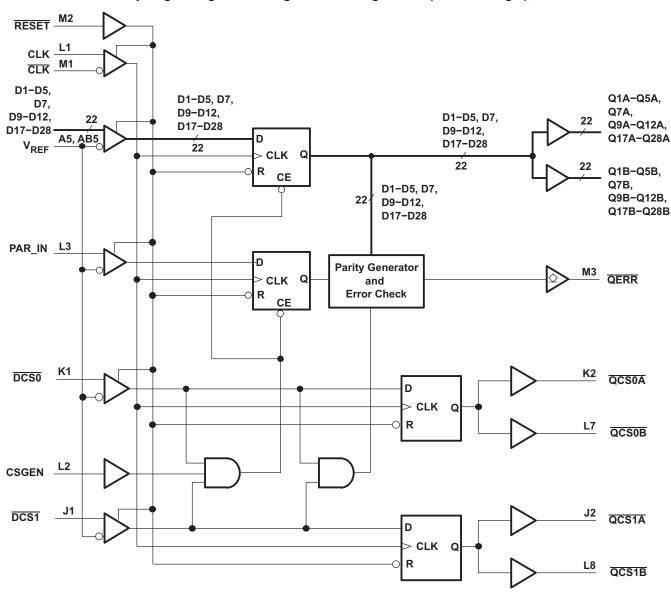
A. Each pin name in parentheses indicates the DDR2 DIMM signal name.

AB


D27

D28

B. NC - No internal connection.



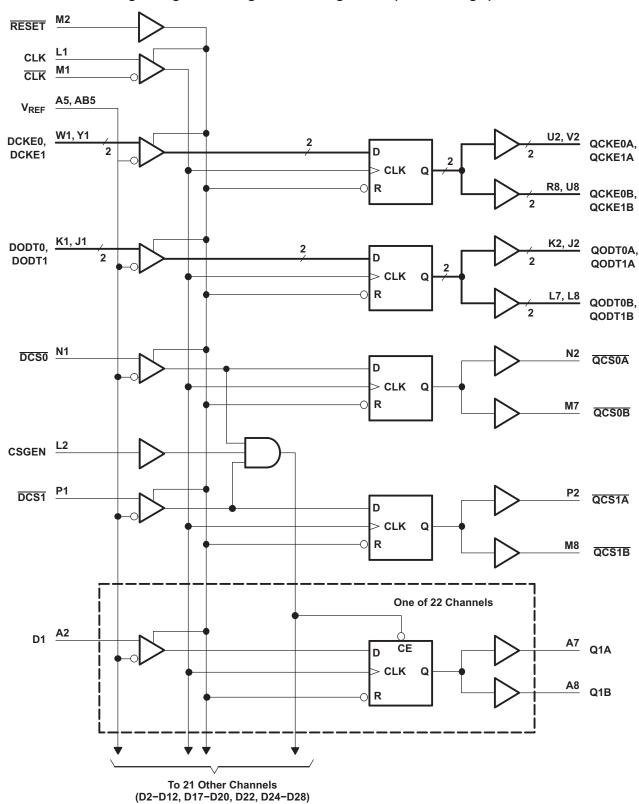
Logic Diagram for Register-A Configuration (Positive Logic); C = 0

Parity Logic Diagram for Register-A Configuration (Positive Logic); C = 0

PACKAGE

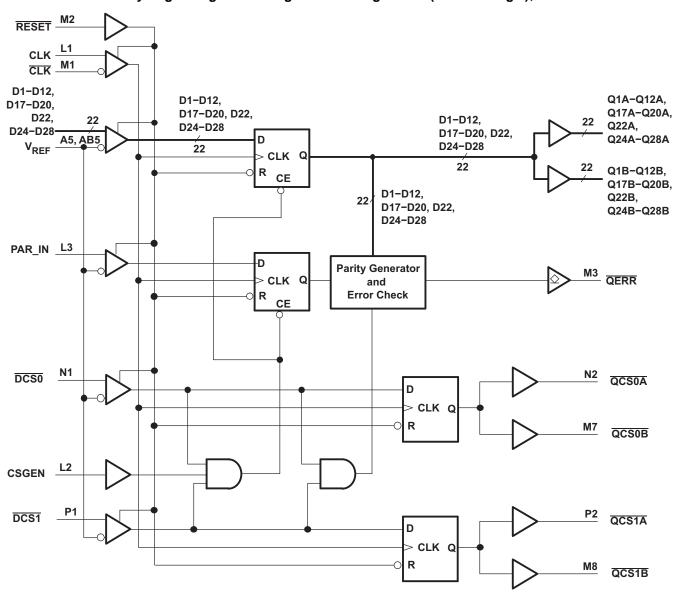
(TOP VIEW) 1 2 3 4 5 6 7 8 000000000000000000В 00000000 С 000000000D 00000000 Е 000000000F 00000000 G Н 00000000000000000 J 00000000 K 000000000 000000000M 00000000 Ν Ρ 00000000 R 000000000Т 00000000 000000000 U ٧ 000000000W 000000000000000000 Υ 000000000AΑ

000000000

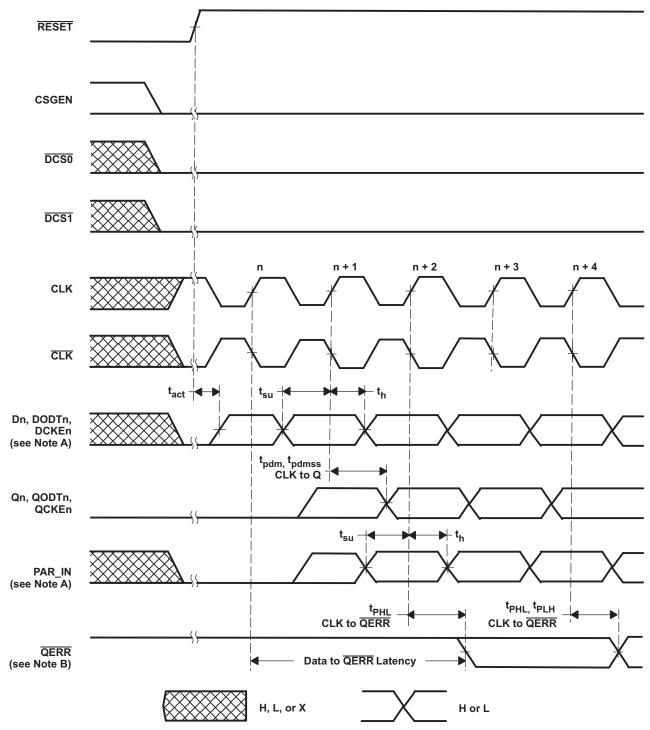

Terminal Assignment for Register-B (C = 1)

	1	2	3	4	5	6	7	8
Α	D2	D1	С	GND	V _{REF}	GND	Q1A	Q1B
В	D4	D3	v _{cc}	v _{cc}	V _{CC}	v _{cc}	Q2A	Q2B
С	D6	D5	GND	GND	GND	GND	Q3A	Q3B
D	D8	D7	v _{cc}	v _{cc}	v _{cc}	v _{cc}	Q4A	Q4B
Е	D9	Q6A	GND	GND	GND	GND	Q5A	Q5B
F	D10	Q8A	v _{cc}	v _{cc}	v _{cc}	v _{cc}	Q7A	Q6B
G	D11	Q10A	GND	GND	GND	GND	Q9A	Q7B
Н	D12	Q12A	v _{cc}	v _{cc}	v _{cc}	v _{cc}	Q11A	Q8B
J	D13 (DODT1)	Q13A (DODT1A)	GND	GND	GND	GND	Q10B	Q9B
K	D14 (DODT0)	Q14A (QODT0A)	v _{cc}	v _{cc}	v _{cc}	v _{cc}	Q12B	Q11B
L	CLK	CSGEN	PAR_IN	GND	GND	GND	Q14B (QODT0B)	Q13B (QODT1B)
M	CLK	RESET	QERR	v _{cc}	V _{CC}	v _{cc}	Q15B (QCS0B)	Q16B (QCS1B)
N	D15 (DCS0)	Q15A (QCS0A)	GND	GND	GND	GND	Q17B	Q18B
Р	D16 (DCS1)	Q16A (QCS1A)	v _{cc}	v _{cc}	v _{cc}	v _{cc}	Q19B	Q20B
R	D17	Q17A	GND	GND	GND	GND	Q18A	Q21B (QCKE0B)
Т	D18	Q19A	v _{cc}	v _{cc}	v _{cc}	v _{cc}	Q20A	Q22B
U	D19	Q21A (QCKE0A)	GND	GND	GND	GND	Q22A	Q23B (QCKE1B)
V	D20	Q23A (QCKE1A)	v _{cc}	v _{cc}	v _{cc}	v _{cc}	Q24A	Q24B
W	D21 (DCKE0)	D22	GND	GND	GND	GND	Q25A	Q25B
Υ	D23 (DCKE1)	D24	v _{cc}	v _{cc}	v _{cc}	v _{cc}	Q26A	Q26B
AA	D25	D26	GND	GND	GND	GND	Q27A	Q27B
AB	D27	D28	NC	v _{cc}	V _{REF}	v _{cc}	Q28A	Q28B

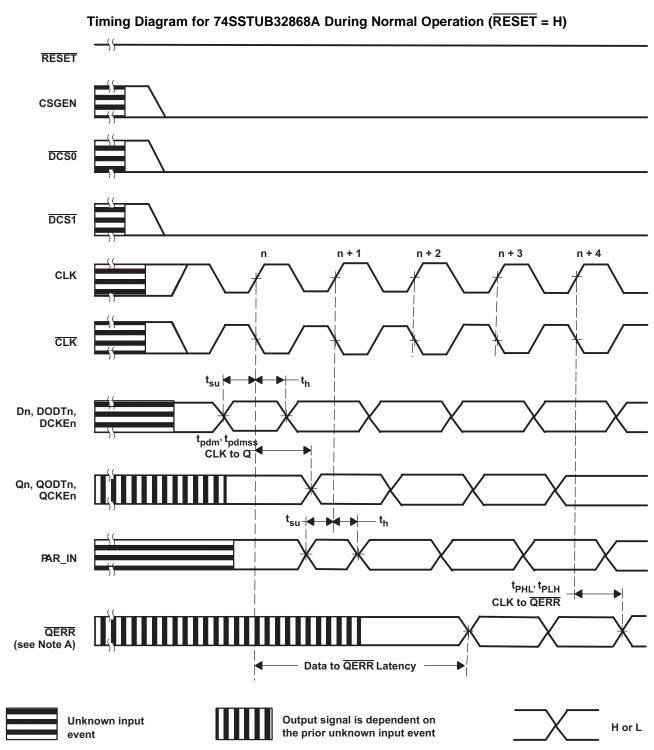
AΒ



Logic Diagram for Register-B Configuration (Positive Logic); C = 1

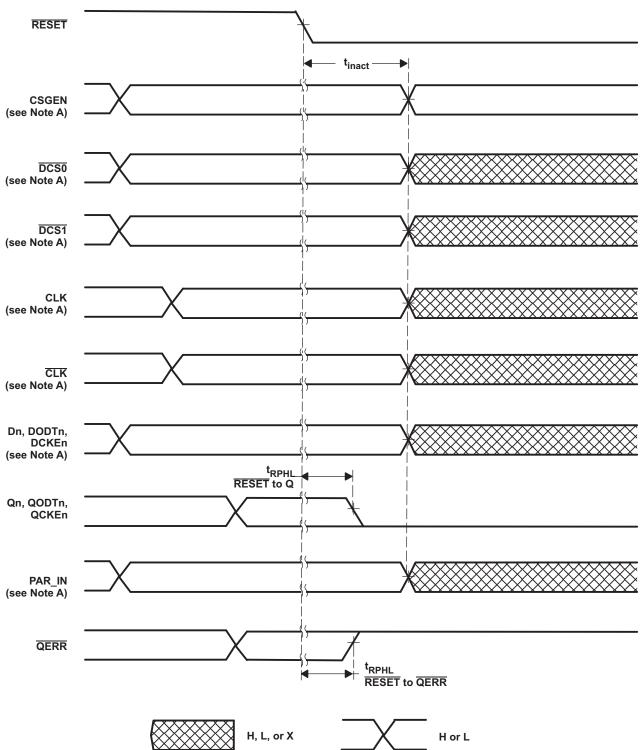


Parity Logic Diagram for Register-B Configuration (Positive Logic); C = 1



Timing Diagram for 74SSTUB32868A During Start-Up (RESET Switches From L to H)

- A. After RESET is switched from low to high, all data and PAR_IN input signals must be set and held low for a minimum time of t_{act} max, to avoid a false error.
- B. If the data is clocked in on the n-clock pulse, the $\overline{\text{QERR}}$ output signal is generated on the n + 2 clock pulse, and it is valid on the n + 3 clock pulse.



A. If the data is clocked in on the n-clock pulse, the QERR output signal is generated on the n + 2 clock pulse, and it is valid on the n + 3 clock pulse. If an error occurs and the QERR output is driven low, it stays latched low for a minimum of two clock cycles or until RESET is driven low.

Timing Diagram for 74SSTUB32868A During Shut-Down (RESET Switches From H to L)

A. After RESET is switched from high to low, all data and clock input signals must be held at logic levels (not floating) for a minimum time of t_{inact} max, to avoid a false error.

TERMINAL FUNCTIONS

TERMINAL NAME	DESCRIPTION	ELECTRICAL CHARACTERISTICS
GND	Ground	Ground input
V _{CC}	Power supply voltage	1.8 V nominal
V _{REF}	Input reference voltage	0.9 V nominal
CLK	Positive master clock input	Differential input
CLK	Negative master clock input	Differential input
С	Configuration control input - Register A or Register B	LVCMOS input
RESET	Asynchronous reset input – resets registers and disables V _{REF} , data and clock differential-input receivers. When RESET is low, all the Q outputs are forced low and the QERR output is forced high.	LVCMOS input
CSGEN	Chip select gate enable. When high, D1–D28 ⁽¹⁾ inputs are latched only when at least one chip select input is low during the rising edge of the clock. When low, the D1–D28 ⁽¹⁾ inputs are latched and redriven on every rising edge of the clock.	LVCMOS input
D1-D28	Data input. Data are clocked in on the crossing of the rising edge of CLK and the falling edge of CLK	SSTL_18 input
DCS0, DCS1	Chip select inputs. These pins initiate DRAM address/command decodes, and as such at least one will be low when a valid address/command is present. The Register can be programmed to redrive all D inputs (CSGEN high) only when at least one chip select input is low. If CSGEN, DCSO, and DCS1 inputs are high, D1-D28 ⁽²⁾ inputs will be disabled.	SSTL_18 input
DODT0, DODT1	The outputs of this register bit will not be suspended by the DCS0 and DCS1 control.	SSTL_18 input
DCKE0, DEKE1	The outputs of this register bit will not be suspended by the DCS0 and DCS1 control.	SSTL_18 input
PAR_IN	Parity input. The parity input arrives one clock cycle after the corresponding data input. Pulldown resistor of typical 150k Ω to GND.	SSTL_18 input with pulldown
Q1-Q28 ⁽³⁾	Data outputs that are suspended by the DCS0 and DCS1 control.	1.8 V CMOS output
QCS0, QCS1	Data output that will not be suspended by the DCS0 and DCS1 control.	1.8 V CMOS output
QODT0, QODT1	Data output that will not be suspended by the DCS0 and DCS1 control.	1.8 V CMOS output
QCKE0, QEKE1	Data output that will not be suspended by the DCS0 and DCS1 control.	1.8 V CMOS output
QERR	Output error bit. This bit is generated two clock cycles after the corresponding data is registered.	Open-drain output
NC	No internal connection	

⁽¹⁾ Data inputs = D1-D5, D7, D9-D12, D17-D28 when C = 0.

Data inputs = D1-D12, D17-D20, D22, D24-D28 when C = 1. Data inputs = D1-D5, D7, D9-D12, D17-D28 when C = 0. Data inputs = D1-D12, D17-D20, D22, D24-D28 when C = 1.

Data outputs = Q1-Q5, Q7, Q9-Q12, Q17-Q28 when C = 0. Data outputs = Q1-Q12, Q17-Q20, Q22, Q24-Q28 when C = 1.

www.ti.com

FUNCTION TABLE

	I GROTION TABLE									
			INPUTS					OUT	PUTS	
RESET	DCS0	DCS1	CSGEN	CLK	CLK	dn, DODTn, DCKEn	Qn	QCS0	QCS1	QODT, QCKE
Н	L	L	Χ	↑	\downarrow	L	L	L	L	L
Н	L	L	Χ	↑	\downarrow	Н	Н	L	L	Н
Н	L	L	Χ	L or H	L or H	Χ	Q_0	Q_0	Q_0	Q_0
Н	L	Н	Χ	↑	\downarrow	L	L	L	Н	L
Н	L	Н	Χ	↑	\downarrow	Н	Н	L	Н	Н
Н	L	Н	Χ	L or H	L or H	Χ	Q_0	Q_0	Q_0	Q_0
Н	Н	L	Χ	↑	\downarrow	L	L	Н	L	L
Н	Н	L	Χ	↑	\downarrow	Н	Н	Н	L	Н
Н	Н	L	Χ	L or H	L or H	Χ	Q_0	Q_0	Q_0	Q_0
Н	Н	Н	L	↑	\downarrow	L	L	Н	Н	L
Н	Н	Н	L	↑	\downarrow	Н	Н	Н	Н	Н
Н	Н	Н	L	L or H	L or H	Χ	Q_0	Q_0	Q_0	Q_0
Н	Н	Н	Н	↑	\downarrow	L	Q_0	Н	Н	L
Н	Н	Н	Н	↑	\downarrow	Н	Q_0	Н	Н	Н
Н	Н	Н	Н	L or H	L or H	Χ	Q_0	Q_0	Q_0	Q_0
L	X or floating	X or floating	X or floating	X or floating	X or floating	L	L	L	L	L

PARITY AND STANDBY FUNCTION

			INPUTS				OUTPUTS
RESET	CLK	CLK	DCS0	DCS1	Σ OF INPUTS = H D1 - D22	PAR_IN ⁽¹⁾	QERR (2)
Н	1	\downarrow	L	Х	Even	L	Н
Н	↑		L	X	Odd	L	L
Н	1	\downarrow	L	X	Even	Н	L
Н	1	\downarrow	L	X	Odd	Н	Н
Н	1	\downarrow	X	L	Even	L	Н
Н	1	\downarrow	X	L	Odd	L	L
Н	1	\downarrow	X	L	Even	Н	L
Н	↑	\downarrow	X	L	Odd	Н	Н
Н	1	\downarrow	Н	Н	X	X	QERR ₀ (3)
Н	L or H	L or H	X	X	X	X	QERR 0
L	X or floating	X or floating	X or floating	X or floating	X	X or floating	Н

If DCS0, DCS1 and CSGEN are driven high, the device is placed in a low-power mode (LPM). If a parity error occurs on the clock cycle before the device enters the LPM and the QERR output is driven low, it stays latched low for the LPM duration plus two clock cycles or until RESET is driven low.

 ⁽¹⁾ PAR_IN arrives one clock cycle after the data to which it applies.
 (2) This transition assumes that QERR is high at the crossing of CLK going high and CLK going low. If QERR goes low, it stays latched low for a minimum of two clock cycles or until RESET is driven low. If two or more consecutive errors occur, the QERR output is driven low and latched low for a clock duration equal to the parity error duration or until RESET is driven low. For QERR computation, CSGEN is a do not care.

TIMING REQUIREMENTS

Over recommended ranges of supply voltage, load, and operating free-air temperature (see Figure 1 and Note (1))

			V _{CC} = 1.8 V ±	±0.1 V	
			MIN	MAX	UNIT
f _(clock)	Clock frequency			410	MHz
t _w	Pulse duration, CL	LK, CLK high or low	1		ns
t _{act}	Differential inputs	active time (see Note (2))		10	ns
t _{inact}	Differential inputs	inactive time (see Note (3))		15	ns
		DCSn before CLK↑, CLK↓, CSGEN high	600		
	Catua tima	DCSn before CLK↑, CLK↓, CSGEN low	500		
t _{su}	Setup time	DODTn, DCKEn, and Data before CLK↑, CLK↓	500		ps
		PAR_IN before CLK↑, CLK↓	500		
+	Hold time	DCSn, DODTn, DCKEn, and Data after CLK↑, CLK↓	400	ne	20
τ _h	Hold tille	PAR_IN after CLK↑, CLK↓	400		ps

All inputs slew rate is 1 V/ns ±20%

SWITCHING CHARACTERISTICS

Over recommended ranges of supply voltage, load, and operating free-air temperature (unless otherwise noted)

			V _{CC} = 1.8 V ±		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
f _{max} (see Figure 2)			410		MHz
t _{pdm} ⁽¹⁾ (production test, see Figure 1)	CLK and CLK	Q	0.5	1.0	ns
t _{PLH} (see Figure 4)	CLK and CLK	QERR	1.2	3	ns
t _{PHL} (see Figure 4)	CLK and CLK	QERK	1	2.4	
t _{RPHL} ⁽²⁾ (see Figure 2)	RESET	Q		3	ns
t _{RPLH} (see Figure 4)	RESET	QERR		3	ns

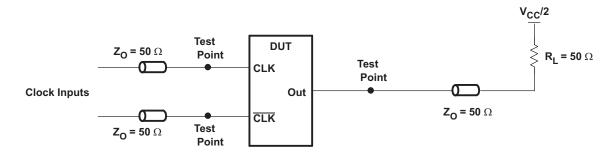
The typical difference between min and max does not exceed 400 ps.

OUTPUT SLEW RATES

over operating free-air temperature range (unless otherwise noted) (see Figure 3)

			V _{CC} = 1.8 V ±0.1 V		
PARAMETER	FROM	TO (OUTPUT)	MIN	MAX	UNIT
dV/dt_r	20%	80%	1	5	V/ns
dV/dt_f	80%	20%	1	5	V/ns
$dV/dt_\Delta^{(1)}$	20% to 80%	20% to 80%		1	V/ns

(1) The difference between dV/dr_r (rising edge rate) and dV/dt_f (falling edge).

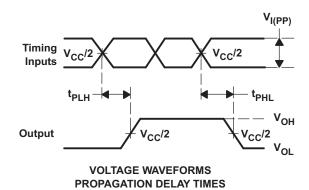

Submit Documentation Feedback

 V_{REF} must be held at a valid input level and data inputs must be held low for a minimum time of t_{act} max, after \overline{RESET} is taken high. V_{REF} , data, and clock inputs must be held at valid voltage levels (not floating) for a minimum time of t_{inact} max, after \overline{RESET} is taken low.

Includes 350-ps test-load transmission line delay.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT



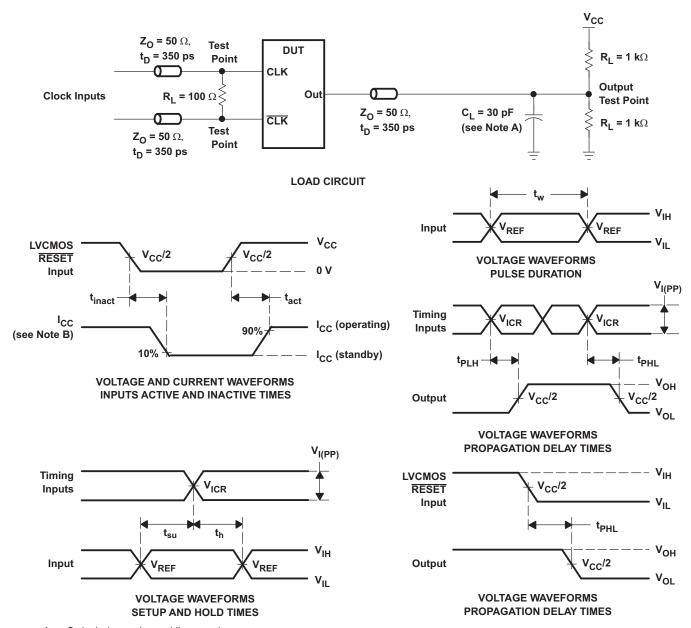
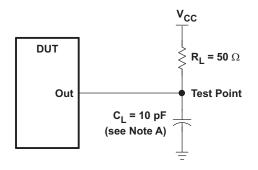

Figure 1. Output Load Circuit for Production Test

Table 1. Propagation Delay (Design Goal as per JEDEC Specification)

			V _{CC} = 1.8 V ±0.1 V		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
t _{pdm} ⁽¹⁾	CLK and CLK	Q	1.1	1.5	ns
t _{pdmss} ⁽¹⁾	CLK and CLK	Q		1.6	ns

(1) Includes 350-ps test-load transmission line delay.



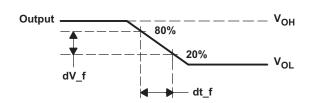
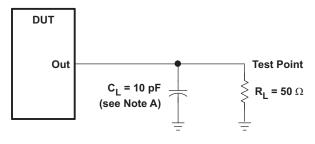
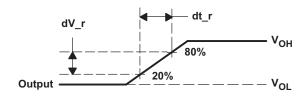
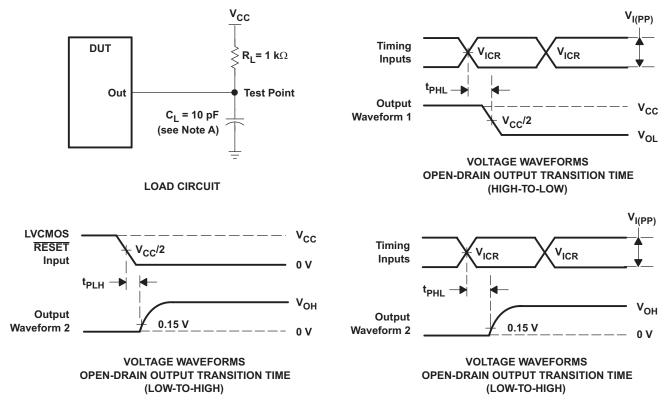

- A. C_L includes probe and jig capacitance.
- B. I_{CC} tested with clock and data inputs held at V_{CC} or GND, and $I_{O} = 0$ mA.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, input slew rate = 1 V/ns \pm 20% (unless otherwise noted).
- D. The outputs are measured one at a time with one transition per measurement.
- E. $V_{REF} = V_{CC}/2$
- F. $V_{IH} = V_{REF} + 250$ mV (ac voltage levels) for differential inputs. $V_{IH} = V_{CC}$ for LVCMOS input.
- G. $V_{IL} = V_{REF}$ 250 mV (ac voltage levels) for differential inputs. $V_{IL} = GND$ for LVCMOS input.
- H. $V_{I(PP)} = 600 \text{ mV}.$
- I. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Data Output Load Circuit and Voltage Waveforms




LOAD CIRCUIT
HIGH-TO-LOW SLEW-RATE MEASUREMENT

VOLTAGE WAVEFORMS
HIGH-TO-LOW SLEW-RATE MEASUREMENT


VOLTAGE WAVEFORMS
LOW-TO-HIGH SLEW-RATE MEASUREMENT

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}, Z_O = 50 \Omega$, input slew rate = 1 V/ns ±20% (unless otherwise specified).

Figure 3. Data Output Slew-Rate Measurement Information

Copyright © 2007–2009, Texas Instruments Incorporated

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_0 = 50 \Omega$, input slew rate = 1 V/ns ±20% (unless otherwise specified).
- C. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 4. Error Output Load Circuit and Voltage Waveforms

Submit Documentation Feedback

PACKAGE OPTION ADDENDUM

24-Dec-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
74SSTUB32868AZRHR	ACTIVE	NFBGA	ZRH	176	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	SB868A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

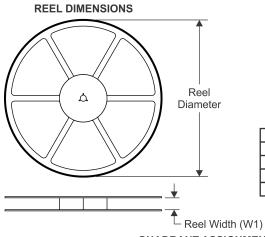
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

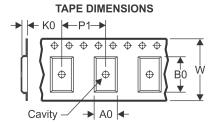
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

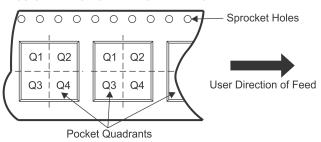
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



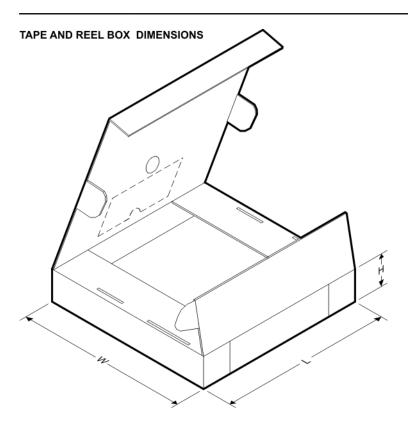

24-Dec-2014

PACKAGE MATERIALS INFORMATION

www.ti.com 12-Feb-2019


TAPE AND REEL INFORMATION

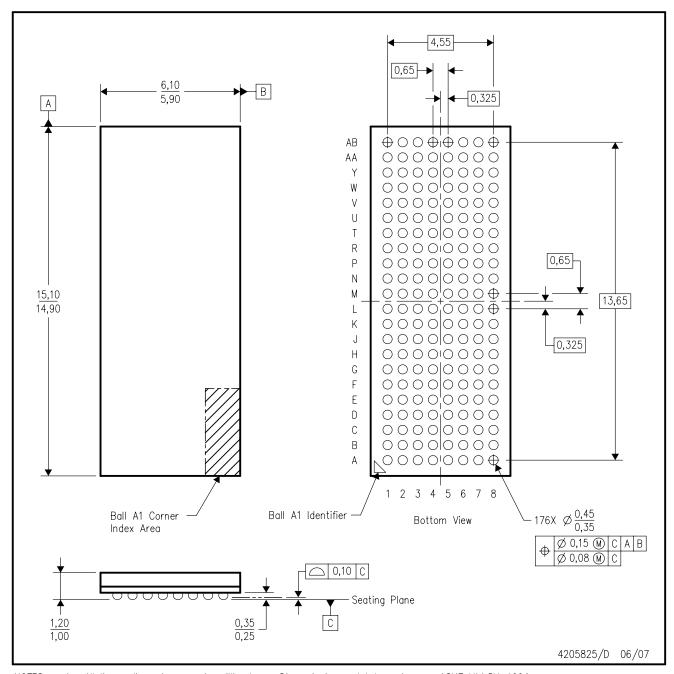
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74SSTUB32868AZRHR	NFBGA	ZRH	176	1000	330.0	24.4	6.3	15.3	1.65	12.0	24.0	Q1

www.ti.com 12-Feb-2019



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
74SSTUB32868AZRHR	NFBGA	ZRH	176	1000	350.0	350.0	43.0	

ZRH (R-PBGA-N176)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Complies to JEDEC MO-246 variation B.
- D. This package is lead-free. Refer to the 176 GRH package (drawing 4205824) for tin-lead (SnPb).

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated