

DATA SHEET

4N47/48/49: Photo-Transistor Hermetic Optocouplers

Features

- Current Transfer Ratio (CTR) guaranteed over –55 °C to +100 °C ambient temperature range
- 1000 V electrical isolation
- Standard T0-5 hermetic package
- High CTR at low input current
- · Base lead available for transistor biasing
- Offers 100% high-reliability screenings

Description

The 4N47/48/49 is designed especially for high-reliability applications that require optical isolation with high CTR and low saturation VCE. Each optocoupler consists of an LED and N-P-N silicon photo-transistor, mounted and coupled in a miniature custom ceramic substrate inside a hermetic TO-5 package. The low input current makes the 4N47/48/49 compatible for direct CMO to Low-Power Schottky Transistor-Transistor Logic (LSTTL)/Transistor-to-Transistor Logic (TTL) interfaces. All electrical parameters are identical to the JEDEC registered 4N47, 4N48, and 4N49.

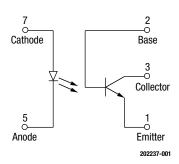


Figure 1. 4N47/48/49 Block Diagram

Figure 1 shows the 4N47/48/49 functional block diagram. Table 1 provides the 4N47/48/49 absolute maximum ratings. Table 2 provides the 4N47/48/49 electrical specifications.

Figures 2 through 4 illustrate the 4N47/48/49 typical performance characteristics. Figure 5 shows the 4N47/48/49 switching test circuit. Figure 6 provides the 4N47/48/49 package dimensions.

DATA SHEET • 4N47/48/49: PHOTO-TRANSISTOR HERMETIC OPTOCOUPLERS

Table 1. 4N47/48/49 Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units	
Coupled		•			
Input to output isolation voltage ¹	VDC	-1000	+1000	V	
Storage temperature range	TSTG	-55	+150	°C	
Lead temperature1.6 mm from the case for 10 seconds			+240	°C	
Input Diode					
Average input current	IDD		40	mA	
Peak forward current (≤1 ms duration)	lF		1	Α	
Reverse voltage	VR		2	V	
Output Detector					
Collector to emitter voltage	VCE		35	V	
Emitter to base voltage	VEB		4	V	
Collector to base voltage	VCB		35	V	
Continuous collector current			50	mA	
Power dissipation	PD		300	mW	

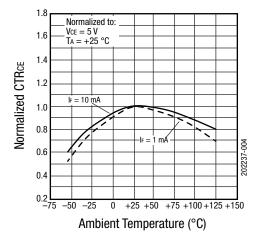
Measured between pins 5, 6, and 7 shorted together, and pins 1, 2 and 3 shorted together. TA = 25 °C and duration = 1 second.

CAUTION: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

Table 2. 4N47/48/49 Electrical Specifications ¹ (TA = 25 °C, Unless Otherwise Noted)

_		nbol Test Condition	4N47		4N48			4N49				
Parameter Sys	Symbol		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
On-state collector current	ICC(ON)	IF = 1 mA, VcE = 5 V	.05			1.0		5.0	2.0		10	mA
		If = 2 mA, $V_{CE} = 5 \text{ V}$, $T_{A} = -55 \text{ °C}$.07			1.4			2.8			mA
		$I_F = 2 \text{ mA}, V_{CE} = 5 \text{ V}, T_A = +100 ^{\circ}\text{C}$.05			1.0			2.0			mA
On-state collector base current	ICCB(ON)	$I_F = 10 \text{ mA}, V_{CB} = 5 \text{ V}$	30			30		30				μΑ
Saturation voltage	VCE_SAT	IF = 2 mA, Icc = 0.5 mA			0.3							٧
		$I_F = 2 \text{ mA}, I_{CC} = 1.0 \text{ mA}$						0.3				٧
		$I_F = 2 \text{ mA}, I_{CC} = 2.0 \text{ mA}$									0.3	V
Breakdown voltage												
Collector to emitter	BVCEO	Ice = 1 mA	40			40			40			V
Collector to base	ВУсво	Icв = 100 μA	45			45			45			V
Emitter to base	BV _{EB0}	IEB = 100 μA	7			7			7			V
Off-state:												
Collector to emitter	ICE(OFF)	Vce = 20 V			100			100			100	nA
		Vce = 20 V, TA = 100 °C			100			100			100	μA
Collector to base	ICB(OFF)	Vcb = 20 V			100			100			100	nA
Input forward voltage	V F	If = 10 mA, TA = -55 °C	1.0		1.7	1.0		1.7	1.0		1.7	V
		IF = 10 mA	0.8		1.5	0.8		1.5	0.8		1.5	V
		If = 10 mA, TA = +100 °C	0.7		1.3	0.7		1.3	0.7		1.3	V
Input reverse current	lr	V _R = 2 V			100			100			100	μΑ
Input to output resistance ²	Rı_o	Vi_0 = ± 1000 VDC	10 ¹¹			10 ¹¹			10 ¹¹			Ω
Input to output capacitance ²	Cı_o	V _{1_0} = 0 V, f = 1 MHz			5			5			5	pF
Rise time	tr	$Vcc = 10 \text{ V}, \text{ RL} = 100 \Omega$		10	20		10	20		15	25	μs
Fall time	tr	I _F = 5 mA		10	20		10	20		15	25	μs

Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to the device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed in the above table may result in permanent damage to the device.


 $^{^2}$ Measured between pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together. TA = 25 °C and duration = 1 second.

Typical Performance Characteristics

Figure 2. Forward Current vs Diode Forward Voltage

Figure 3. Normalized Collector Current vs Forward Current

Figure 4. Normalized CTRce vs Temperature

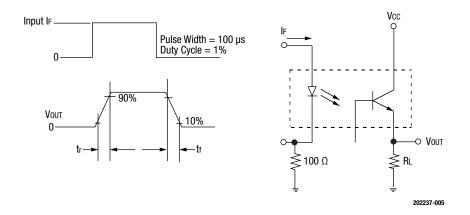


Figure 5. 4N47/48/49 Switching Test Circuit

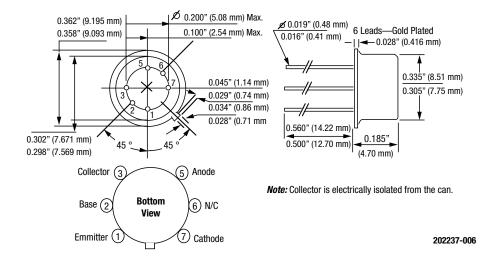


Figure 6. 4N47/48/49 Package Dimensions

DATA SHEET • 4N47/48/49: PHOTO-TRANSISTOR HERMETIC OPTOCOUPLERS

Ordering Information

Model Name	Manufacturing Part Number
4N47/48/49: Photo-Transistor Hermetic Optocouplers	4N47/48/49

Copyright $\ @$ 2012, 2017 Isolink, Inc. All Rights Reserved.

Information in this document is provided in connection with Isolink, Inc. ("Isolink"), a wholly-owned subsidiary of Skyworks Solutions, Inc. These materials, including the information contained herein, are provided by Isolink as a service to its customers and may be used for informational purposes only by the customer. Isolink assumes no responsibility for errors or omissions in these materials or the information contained herein. Isolink may change its documentation, products, services, specifications or product descriptions at any time, without notice. Isolink makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Isolink assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Isolink products, information or materials, except as may be provided in Isolink Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. ISOLINK DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. ISOLINK SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Isolink products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Isolink products could lead to personal injury, death, physical or environmental damage. Isolink customers using or selling Isolink products for use in such applications do so at their own risk and agree to fully indemnify Isolink for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Isolink products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Isolink assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Isolink products outside of stated published specifications or parameters.

Isolink is a trademark of Isolink Inc. in the United States and other countries. Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners.