

www.ti.com.cn ZHCS619 – DECEMBER 2011

Sound M 低功率,低噪音和失真,双极输入音频运算放大器

查询样品: OPA1662, OPA1664

特性

- 低噪声: 1kHz 下为 3.3nV/√Hz
- 低失真: 1kHz下为0.00006%
- 低静态电流: 每通道1.5mA
- 转换速率: 17V/µs
- 宽增益带宽: 22MHz(G = +1)
- 单位增益稳定
- 轨至轨输出
- 宽电源范围:
 ±1.5 V至 ±18 V,或者 +3 V至+36 V
- 双通道及四通道产品已供货
- 小封装尺寸:
 双通道: 小外形尺寸(SO)-8和微型小外形尺寸(MSOP)-8
 四通道: 小外形尺寸(SO)-14和薄型小尺寸(TSSOP)-14

应用范围

- USB和固件音频系统
- 模拟和数字混音器
- 便携式录音系统
- 音效处理器
- 高端A/V接收器
- · 高端DVD和 蓝光(Blu-Ray)™ 播放器
- 高端车载音频

说明

OPA1662(双通道)与 OPA1664(四通道)双极输入运算放大器系列产品能够以超低失真(1kHz 时为0.00006%)实现 3.3nV/√Hz 的极低噪声密度。OPA1662 与 OPA1664 系列运算放大器可在 2 kΩ 负载下支持 600 mV 以内的轨至轨输出摆幅,其可提高预留空间并达到增加动态范围。此外,这些器件还具有 ±30mA 的高输出驱动能力。

这些器件可在 ±1.5 V 至 ±18 V,或者+3 V 至+36 V 很宽的电源电压范围内运行,每通道电源电流仅为 1.5 mA。 OPA1662 与 OPA1664运算放大器单位增益稳定并可在宽范围的负载条件下提供出色的动态性能。

它们还采用完全独立的电路系统,可将串扰降到最低,即便在过驱动或过载时也不受通道间相互作用而带来的干扰。

OPA1662 与 OPA1664 额定温度范围为 -40°C 至 +85°C。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

声增益 is a trademark of Texas Instruments Incorporated. 蓝光(Blu-Ray) is a trademark of Blu-Ray Disc Association. All other trademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

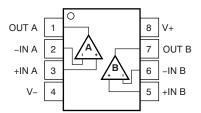
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE INFORMATION(1)

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	PACKAGE MARKING	
OD44662	SO-8	D	OP1662	
OPA1662	MSOP-8	DGK	OUQI	
OPA1664	SO-14	D	OP1664	
OPA1664	TSSOP-14	PW	OP1664	

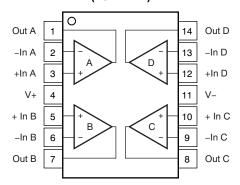
⁽¹⁾ For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1)


Over operating free-air temperature range (unless otherwise noted).

		OPA1662, OPA1664	UNIT		
Supply voltage, V	$V_{S} = (V+) - (V-)$	40	V		
Input voltage		(V-) - 0.5 to $(V+) + 0.5$	V		
Input current (all pins except power-supply pins) ±10 m					
Output short-circu	uit ⁽²⁾	Continuo	us		
Operating temper	rature range	-55 to +125	°C		
Storage temperat	ture range	-65 to +150	°C		
Junction tempera	ture	200	°C		
	Human body model (HBM)	2	kV		
Junction temperature	Charged device model (CDM)	1	kV		
	Machine model (MM)	200	V		

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not supported.


PIN CONFIGURATIONS

OPA1662: D AND DGK PACKAGES SO-8 AND MSOP-8 (TOP VIEW)

OPA1664: D AND PW PACKAGES SO-14 AND TSSOP-14 (TOP VIEW)

ISTRUMENTS

⁽²⁾ Short-circuit to V_S/2 (ground in symmetrical dual supply setups), one amplifier per package.

www.ti.com.cn ZHCS619 - DECEMBER 2011

ELECTRICAL CHARACTERISTICS: $V_s = \pm 15 \text{ V}$

At $T_A = +25^{\circ}C$ and $R_L = 2 \text{ k}\Omega$, unless otherwise noted. $V_{CM} = V_{OUT} = \text{midsupply}$, unless otherwise noted.

· A	= +25 C and R _L = 2 kΩ, unless otherwise noted. V _{CM} = V _{OUT} = midsupply, unless otherwise noted. OPA1662, OPA1664						
	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
AUDIO	PERFORMANCE						
					0.00006		%
THD+N	Total harmonic distortion + noise	G = +1, f = 1 k	Hz , $V_O = 3 V_{RMS}$		-124		dB
			SMPTE/DIN two-tone, 4:1		0.00004		%
			(60 Hz and 7 kHz)		-128		dB
		G = +1,	DIM 30		0.00004		%
IMD	Intermodulation distortion	$V_0 = 3 V_{RMS}$	(3-kHz square wave and 15-kHz sine wave)		-128		dB
			CCIF twin-tone		0.00004		%
			(19 kHz and 20 kHz)		-128		dB
FREQU	ENCY RESPONSE						
GBW	Gain-bandwidth product	G = +1			22		MHz
SR	Slew rate	G = -1			17		V/µs
	Full power bandwidth ⁽¹⁾	$V_O = 1 V_P$			2.7		MHz
	Overload recovery time	G = -10			1		μs
	Channel separation (dual and quad)	f = 1 kHz			-120		dB
NOISE							
e _n	Input voltage noise	f = 20 Hz to 20) kHz		2.8		μV_{PP}
	lanut voltage neige density	f = 1 kHz			3.3		nV/√ Hz
	Input voltage noise density	f = 100 Hz			5		nV/√ Hz
	Input current noise density	f = 1 kHz			1		pA/√Hz
l _n	input current noise density	f = 100 Hz			2		pA/√Hz
OFFSET	VOLTAGE						
Vos	Input offset voltage	$V_S = \pm 1.5 \text{ V to}$	±18 V		±0.5	±1.5	mV
*OS	input onset voltage	$V_S = \pm 1.5 \text{ V to}$	$\pm 18 \text{ V}, \text{ T}_{\text{A}} = -40^{\circ}\text{C to } +85^{\circ}{}^{(2)}$		2	8	μV/°C
PSRR	Power-supply rejection ratio	$V_S = \pm 1.5 \text{ V to}$	±18 V		1	3	μV/V
INPUT E	BIAS CURRENT						
l _B	Input bias current	$V_{CM} = 0 V$			600	1200	nA
los	Input offset current	$V_{CM} = 0 V$			±25	±100	nA
INPUT \	OLTAGE RANGE						
V_{CM}	Common-mode voltage range			(V-) +0.5		(V+) – 1	V
CMRR	Common-mode rejection ratio			106	114		dB
INPUT I	MPEDANCE						
	Differential				170 2		$k\Omega \parallel pF$
	Common-mode				600 2.5		MΩ pF
OPEN-L	OOP GAIN						
A _{OL}	Open-loop voltage gain	(V–) + 0.6 V ≤	$V_0 \le (V+) - 0.6 \text{ V}, R_L = 2 \text{ k}\Omega$	106	114		dB
OUTPU	Γ	1					
V _{OUT}	Output voltage	$R_L = 2 k\Omega$		(V-) + 0.6		(V+) - 0.6	V
I _{OUT}	Output current				al Characteristi		mA
Z _O	Open-loop output impedance			See Typica	al Characteristi	cs	Ω
I _{SC}	Short-circuit current ⁽³⁾				±50		mA
C_{LOAD}	Capacitive load drive				200		pF

 ⁽¹⁾ Full-power bandwidth = SR/(2π × V_P), where SR = slew rate.
 (2) Specified by design and characterization.
 (3) One channel at a time.

ZHCS619 - DECEMBER 2011 www.ti.com.cn

ELECTRICAL CHARACTERISTICS: $V_S = \pm 15 \text{ V}$ (continued)

At $T_A = +25^{\circ}C$ and $R_L = 2 k\Omega$, unless otherwise noted. $V_{CM} = V_{OUT} = midsupply$, unless otherwise noted.

			OPA16	OPA1662, OPA1664			
PARAMETER		CONDITIONS	MIN	MIN TYP		UNIT	
POWE	ER SUPPLY						
Vs	Specified voltage range		±1.5		±18	V	
. (Quiescent current	I _{OUT} = 0 A		1.5	1.8	mA	
IQ	(per channel)	$I_{OUT} = 0 \text{ A}, T_A = -40^{\circ}\text{C to } +85^{\circ}{}^{(4)}$			2	mA	
TEMP	ERATURE	•					
	Specified range		-40		+85	°C	
	Operating range		-55		+125	°C	

⁽⁴⁾ Specified by design and characterization.

ELECTRICAL CHARACTERISTICS: V_S = +5 V

At $T_A = +25^{\circ}C$ and $R_L = 2 \text{ k}\Omega$, unless otherwise noted. $V_{CM} = V_{OUT} = \text{midsupply}$, unless otherwise noted.

				OPA1662, OPA1664			
	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
AUDIO I	PERFORMANCE	•		•			
THD+N	Total harmonic distortion + noise	G _ +1 f _ 1 l	$Hz, V_O = 3 V_{RMS}$		0.0001		%
I HD+N	Total Harmonic distortion + noise	G = +1, 1 = 1 F	mz , $v_0 = 3 v_{RMS}$		-120		dB
			SMPTE/DIN two-tone, 4:1		0.00004		%
			(60 Hz and 7 kHz)		-128		dB
		G = +1,	DIM 30		0.00004		%
IMD	Intermodulation distortion	$V_O = 3 V_{RMS}$	(3-kHz square wave and 15-kHz sine wave)		-128		dB
			CCIF twin-tone		0.00004		%
			(19 kHz and 20 kHz)		-128		dB
FREQUE	ENCY RESPONSE	•		•			
GBW	Gain-bandwidth product	G = +1			20		MHz
SR	Slew rate	G = -1			13		V/µs
	Full power bandwidth ⁽¹⁾	$V_O = 1 V_P$			2		MHz
	Overload recovery time	G = -10			1		μs
	Channel separation (dual and quad)	f = 1 kHz			-120		dB
NOISE						·	
e _n	Input voltage noise f = 2		f = 20 Hz to 20 kHz		3.3		μV_{PP}
	Input voltage poice density	f = 1 kHz			3.3		nV/√ Hz
	Input voltage noise density	f = 100 Hz			5		nV/√ Hz
	Input ourrent poins density	f = 1 kHz			1		pA/√ Hz
I _n	Input current noise density	f = 100 Hz			2		pA/√ Hz
OFFSET	VOLTAGE						
Vos	Input offset voltage	$V_S = \pm 1.5 \text{ V to}$			±0.5	±1.5	mV
vos	input onset voitage	$V_S = \pm 1.5 \text{ V to}$	$\pm 18 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}{}^{(2)}$		2	8	μV/°C
PSRR	Power-supply rejection ratio	$V_S = \pm 1.5 \text{ V to}$	±18 V		1	3	μV/V
INPUT E	BIAS CURRENT						
I_{B}	Input bias current	$V_{CM} = 0 V$			600	1200	nA
Ios	Input offset current	$V_{CM} = 0 V$			±25	±100	nA
INPUT V	OLTAGE RANGE						
V_{CM}	Common-mode voltage range			(V-) +0.5		(V+) - 1	V
CMRR	Common-mode rejection ratio			86	100		dB
INPUT II	MPEDANCE					.	
	Differential				170 2		kΩ pF
	Common-mode				600 2.5		$M\Omega \parallel pF$

Full-power bandwidth = SR/($2\pi \times V_P$), where SR = slew rate. Specified by design and characterization.

⁽²⁾

www.ti.com.cn ZHCS619 – DECEMBER 2011

ELECTRICAL CHARACTERISTICS: V_s = +5 V (continued)

At $T_A = +25$ °C and $R_L = 2$ k Ω , unless otherwise noted. $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted.

			OPA16	62, OPA1664			
	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT	
OPEN-I	LOOP GAIN						
A _{OL}	Open-loop voltage gain	$(V-) + 0.6 \text{ V} \le V_0 \le (V+) - 0.6 \text{ V}, R_L = 2 \text{ k}\Omega$	90	100		dB	
OUTPU	т						
V _{OUT}	Output voltage	$R_L = 2 k\Omega$	(V-) + 0.6	(V+) - 0.6	V	
I _{OUT}	Output current	See Typical Characteristics					
Z _O	Open-loop output impedance	See Typical Characteristics					
I _{SC}	Short-circuit current ⁽³⁾			±40			
C _{LOAD}	Capacitive load drive			200		pF	
POWER	R SUPPLY						
Vs	Specified voltage range		±1.5		±18	V	
	Quiescent current	I _{OUT} = 0 A		1.4	1.7	mA	
IQ	(per channel)	$I_{OUT} = 0 \text{ A}, T_A = -40^{\circ}\text{C to } +85^{\circ}^{(2)}$			2	mA	
TEMPE	RATURE						
	Specified range		-40		+85	°C	
	Operating range		-55		+125	°C	

⁽³⁾ One channel at a time.

THERMAL INFORMATION: OPA1662

		OP			
	THERMAL METRIC ⁽¹⁾	D (SO)	DGK (MSOP)	UNITS	
		8 PINS	8 PINS		
θ_{JA}	Junction-to-ambient thermal resistance	156.3	225.4		
θ _{JCtop}	Junction-to-case (top) thermal resistance	85.5	78.8		
θ_{JB}	Junction-to-board thermal resistance	64.9	110.5	°C///	
ΨЈТ	Junction-to-top characterization parameter	33.8	14.6	°C/W	
ΨЈВ	Junction-to-board characterization parameter	64.3	108.5		
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	N/A	N/A		

⁽¹⁾ 有关传统和新的热度量的更多信息,请参阅 IC 封装热度量 应用报告 SPRA953。

THERMAL INFORMATION:OPA1664

		OPA	OPA1664			
	THERMAL METRIC ⁽¹⁾	D (SO)	PW (TSSOP)	UNITS		
		14 PINS	14 PINS			
θ_{JA}	Junction-to-ambient thermal resistance	78.6	125.8			
θ_{JCtop}	Junction-to-case (top) thermal resistance	37.0	45.2			
θ_{JB}	Junction-to-board thermal resistance	24.9	57.5	°C/W		
ΨЈТ	Junction-to-top characterization parameter	9.7	5.5	C/VV		
ΨЈВ	Junction-to-board characterization parameter	24.6	56.7			
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	N/A	N/A			

⁽¹⁾ 有关传统和新的热度量的更多信息,请参阅 IC 封装热度量 应用报告 SPRA953。

TYPICAL CHARACTERISTICS

At T_A = +25°C, V_S = ±15 V, and R_L = 2 k Ω , unless otherwise noted.

INPUT VOLTAGE NOISE DENSITY AND INPUT CURRENT NOISE DENSITY vs FREQUENCY

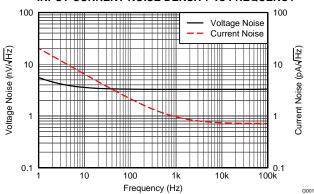


Figure 1.

0.1Hz TO 10Hz NOISE

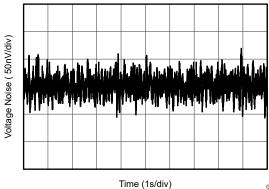


Figure 2.

VOLTAGE NOISE vs SOURCE RESISTANCE

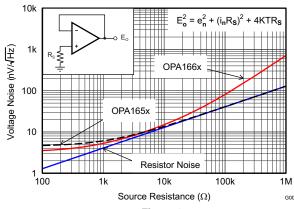


Figure 3.

MAXIMUM OUTPUT VOLTAGE vs FREQUENCY

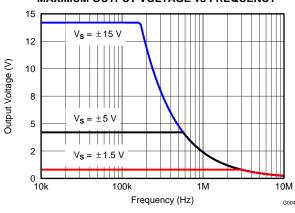


Figure 4.

GAIN AND PHASE vs FREQUENCY

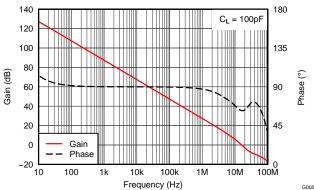
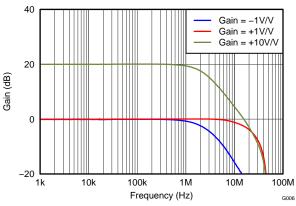
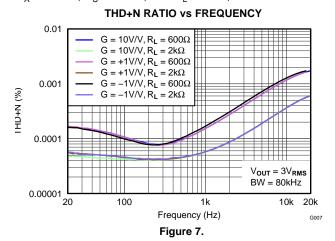
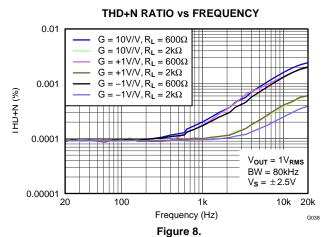
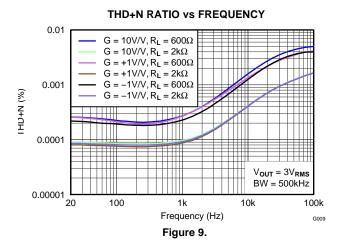


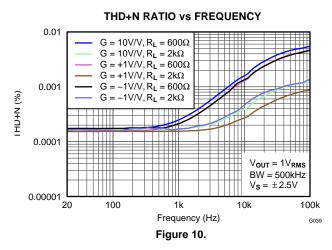
Figure 5.

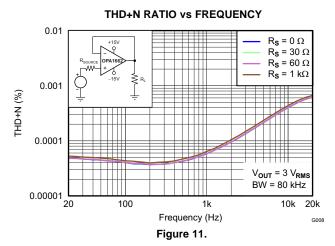
CLOSED-LOOP GAIN vs FREQUENCY

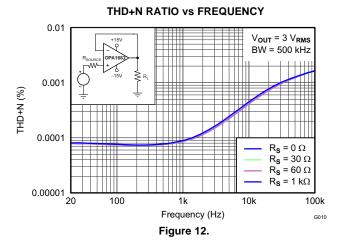




Figure 6.


www.ti.com.cn ZHCS619 – DECEMBER 2011


TYPICAL CHARACTERISTICS (continued)


At $T_A = +25$ °C, $V_S = \pm 15$ V, and $R_L = 2$ k Ω , unless otherwise noted.



TYPICAL CHARACTERISTICS (continued)

At $T_A = +25$ °C, $V_S = \pm 15$ V, and $R_L = 2$ k Ω , unless otherwise noted.

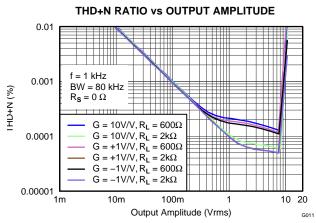


Figure 13.

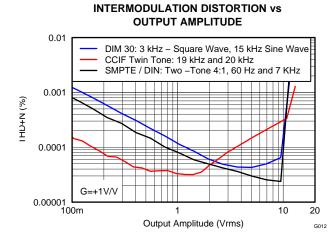
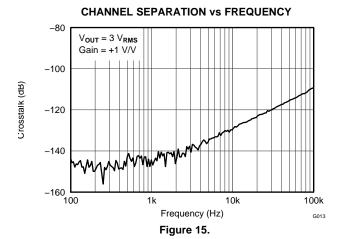



Figure 14.

SMALL-SIGNAL STEP RESPONSE

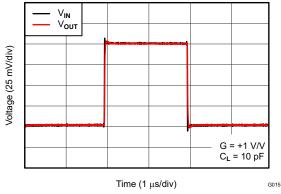


Figure 17.

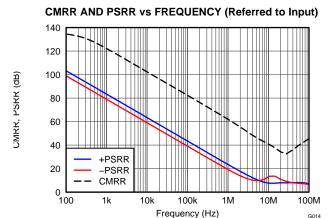


Figure 16.

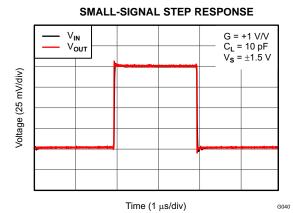


Figure 18.

TYPICAL CHARACTERISTICS (continued)

At T_A = +25°C, V_S = ±15 V, and R_L = 2 k Ω , unless otherwise noted.

SMALL-SIGNAL STEP RESPONSE

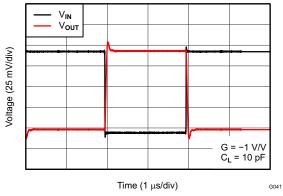


Figure 19.

SMALL-SIGNAL STEP RESPONSE

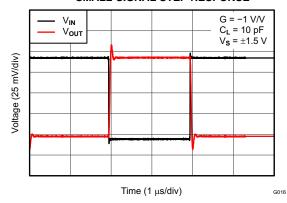


Figure 20.

LARGE-SIGNAL STEP RESPONSE

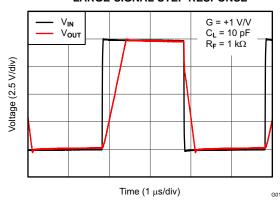


Figure 21.

LARGE-SIGNAL STEP RESPONSE

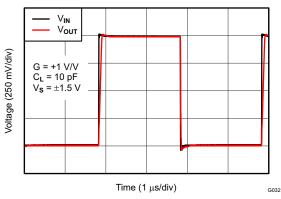


Figure 22.

LARGE-SIGNAL STEP RESPONSE

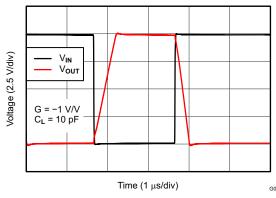


Figure 23.

LARGE-SIGNAL STEP RESPONSE

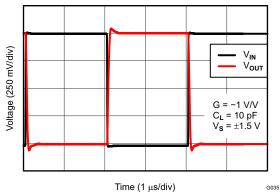


Figure 24.

TYPICAL CHARACTERISTICS (continued)

At T_A = +25°C, V_S = ±15 V, and R_L = 2 k Ω , unless otherwise noted.

SMALL-SIGNAL OVERSHOOT vs CAPACITIVE LOAD

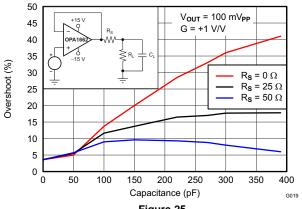


Figure 25.

SMALL-SIGNAL OVERSHOOT vs CAPACITIVE LOAD

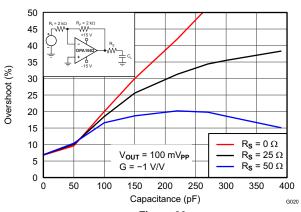


Figure 26.

SMALL-SIGNAL OVERSHOOT vs CAPACITIVE LOAD

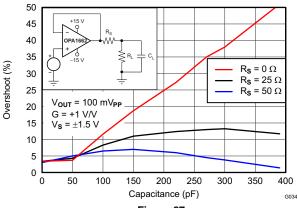
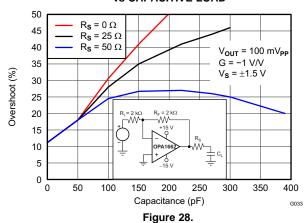
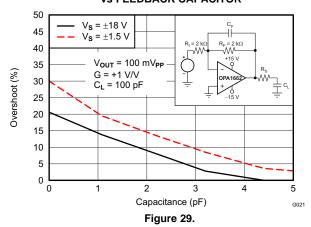




Figure 27.

SMALL-SIGNAL OVERSHOOT vs CAPACITIVE LOAD

SMALL-SIGNAL OVERSHOOT vs FEEDBACK CAPACITOR

PERCENT OVERSHOOT vs CAPACITIVE LOAD

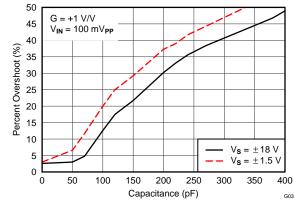
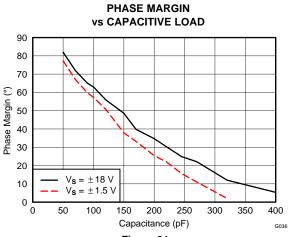
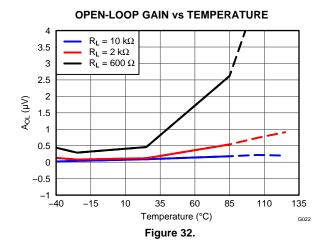
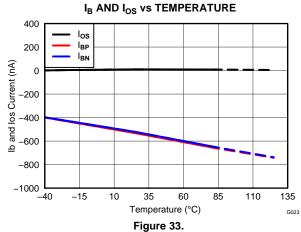
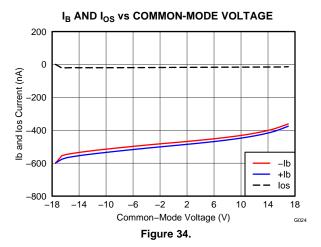
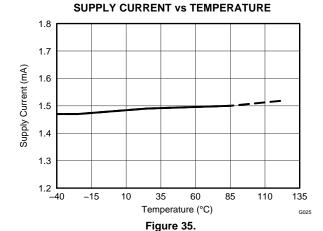



Figure 30.


www.ti.com.cn ZHCS619-DECEMBER 2011


TYPICAL CHARACTERISTICS (continued)


At T_A = +25°C, V_S = ±15 V, and R_L = 2 k Ω , unless otherwise noted.



SUPPLY CURRENT vs SUPPLY VOLTAGE

3

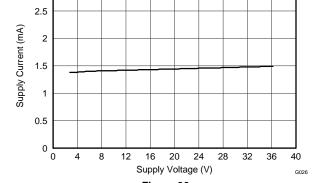


Figure 36.

Short Circuit Current (mA)

30

-40

TYPICAL CHARACTERISTICS (continued)

At $T_A = +25$ °C, $V_S = \pm 15$ V, and $R_L = 2$ k Ω , unless otherwise noted.

SHORT-CIRCUIT CURRENT vs TEMPERATURE 60 55 50 45 40 35

Temperature (°C) Figure 37.

POSITIVE OVERLOAD RECOVERY

60

110

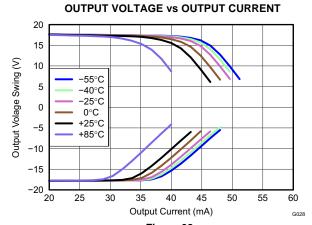
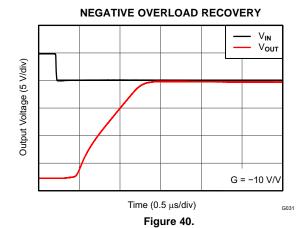
G027

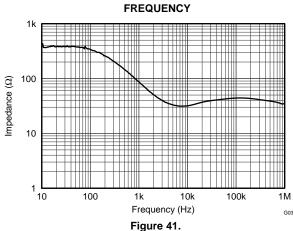
35

+lsc

-lsc

-15


Figure 38.

V_{IN} V_{OUT} Output Voltage (5V /div) G = -10 V/V Time (0.5 µs/div)

Figure 39.

OPEN-LOOP OUTPUT IMPEDANCE vs

NO PHASE REVERSAL

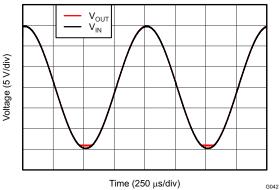


Figure 42.

www.ti.com.cn ZHCS619 – DECEMBER 2011

APPLICATION INFORMATION

The OPA1662 and OPA1664 are unity-gain stable, precision dual and quad op amps with very low noise. Applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1-µF capacitors are adequate. Figure 43 shows a simplified schematic of the OPA166x (one channel shown).

OPERATING VOLTAGE

The OPA166x series op amps operate from ±1.5 V to ±18 V supplies while maintaining excellent performance. The OPA166x series can operate with as little as +3 V between the supplies and with up to +36 V between the supplies. However, some

applications do not require equal positive and negative output voltage swing. With the OPA166x series, power-supply voltages do not need to be equal. For example, the positive supply could be set to +25 V with the negative supply at -5 V.

In all cases, the common-mode voltage must be maintained within the specified range. In addition, key parameters are assured over the specified temperature range of $T_A = -40^{\circ} \text{C}$ to $+85^{\circ} \text{C}$. Parameters that vary significantly with operating voltage or temperature are shown in the Typical Characteristics.

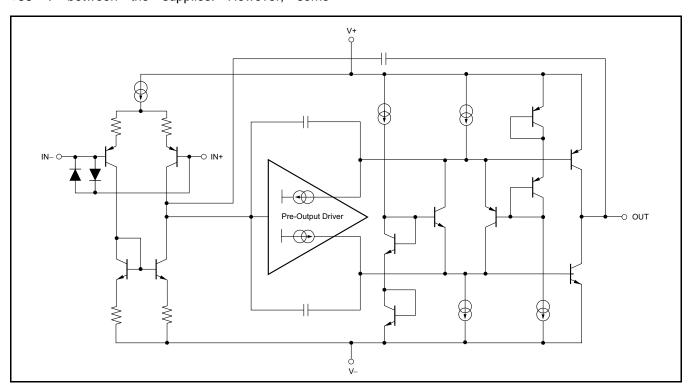


Figure 43. OPA166x Simplified Schematic

ZHCS619 – DECEMBER 2011 www.ti.com.cn

TEXAS INSTRUMENTS

INPUT PROTECTION

The input terminals of the OPA1662 and OPA1664 are protected from excessive differential voltage with back-to-back diodes, as Figure 44 illustrates. In most circuit applications, the input protection circuitry has no consequence. However, in low-gain or G = +1circuits, fast ramping input signals can forward bias these diodes because the output of the amplifier cannot respond rapidly enough to the input ramp. If the input signal is fast enough to create this forward bias condition, the input signal current must be limited to 10 mA or less. If the input signal current is not inherently limited, an input series resistor (R_I) and/or a feedback resistor (R_F) can be used to limit the signal input current. This resistor degrades the low-noise performance of the OPA166x and is examined in the following *Noise Performance* section. Figure 44 shows an example configuration when both current-limiting input and feeback resistors are used.

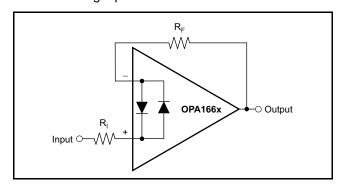


Figure 44. Pulsed Operation

NOISE PERFORMANCE

Figure 45 shows the total circuit noise for varying source impedances with the op amp in a unity-gain configuration (no feedback resistor network, and therefore no additional noise contributions).

The OPA166x (GBW = 22 MHz, G = +1) is shown with total circuit noise calculated. The op amp itself contributes both a voltage noise component and a current noise component. The voltage noise is commonly modeled as a time-varying component of the offset voltage. The current noise is modeled as the time-varying component of the input bias current and reacts with the source resistance to create a voltage component of noise. Therefore, the lowest noise op amp for a given application depends on the source impedance. For low source impedance, current noise is negligible, and voltage noise generally dominates. The low voltage noise of the OPA166x series op amps makes them a better choice for low source impedances of less than 1 k Ω .

The equation in Figure 45 shows the calculation of the total circuit noise, with these parameters:

- e_n = Voltage noise
- i_n = Current noise
- R_S = Source impedance
- k = Boltzmann's constant = 1.38 × 10⁻²³ J/K
- T = Temperature in Kelvins (K)

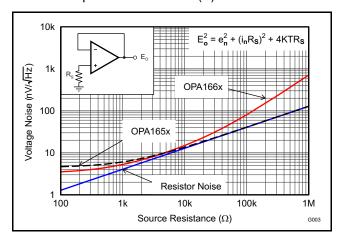


Figure 45. Noise Performance of the OPA166x in Unity-Gain Buffer Configuration

BASIC NOISE CALCULATIONS

Design of low-noise op amp circuits requires careful consideration of a variety of possible noise contributors: noise from the signal source, noise generated in the op amp, and noise from the feedback network resistors. The total noise of the circuit is the root-sum-square combination of all noise components.

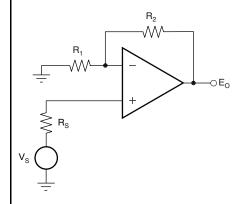
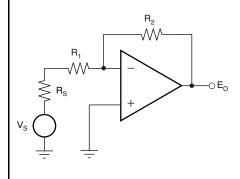

The resistive portion of the source impedance produces thermal noise proportional to the square root of the resistance. Figure 45 plots this equation. The source impedance is usually fixed; consequently, select the op amp and the feedback resistors to minimize the respective contributions to the total noise.

Figure 46 illustrates both inverting and noninverting op amp circuit configurations with gain. In circuit configurations with gain, the feedback network resistors also contribute noise. The current noise of the op amp reacts with the feedback resistors to create additional noise components. The feedback resistor values can generally be chosen to make these noise sources negligible. The equations for total noise are shown for both configurations.

www.ti.com.cn ZHCS619 – DECEMBER 2011

A) Noise in Noninverting Gain Configuration



Noise at the output:

$$E_0^2 = \left(1 + \frac{R_2}{R_1}\right)^2 e_n^2 + \left(\frac{R_2}{R_1}\right)^2 e_1^2 + e_2^2 + \left(1 + \frac{R_2}{R_1}\right)^2 e_s^2$$

Where
$$e_S = \sqrt{4kTR_S}$$
 = thermal noise of R_S
 $e_1 = \sqrt{4kTR_1}$ = thermal noise of R_1
 $e_2 = \sqrt{4kTR_2}$ = thermal noise of R_2

B) Noise in Inverting Gain Configuration

Noise at the output:

$${\sf E_O}^2 = \left(1 + \frac{{\sf R_2}}{{\sf R_1} + {\sf R_S}}\right)^2 {\sf e_n}^2 + \left(\frac{{\sf R_2}}{{\sf R_1} + {\sf R_S}}\right)^2 {\sf e_1}^2 + {\sf e_2}^2 + \left(\frac{{\sf R_2}}{{\sf R_1} + {\sf R_S}}\right)^2 {\sf e_s}^2$$

Where
$$e_S = \sqrt{4kTR_S}$$
 = thermal noise of R_S
 $e_1 = \sqrt{4kTR_1}$ = thermal noise of R_1
 $e_2 = \sqrt{4kTR_2}$ = thermal noise of R_2

Note: For the OPA166x series of op amps at 1 kHz, $e_n = 3.3 \text{ nV/}\sqrt{\text{Hz}}$.

Figure 46. Noise Calculation in Gain Configurations

ZHCS619 – DECEMBER 2011 www.ti.com.cn

TOTAL HARMONIC DISTORTION MEASUREMENTS

The OPA166x series op amps have excellent distortion characteristics. THD + noise is below 0.0006% (G = +1, V_O = 3 V_{RMS} , BW = 80kHz) throughout the audio frequency range, 20 Hz to 20 kHz, with a 2-k Ω load (see Figure 7 for characteristic performance).

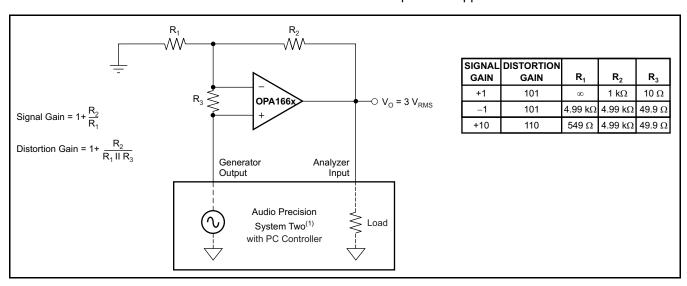
The distortion produced by the OPA166x series op amps is below the measurement limit of many commercially available distortion analyzers. However, a special test circuit (such as Figure 47 shows) can be used to extend the measurement capabilities.

Op amp distortion can be considered an internal error source that can be referred to the input. Figure 47 shows a circuit that causes the op amp distortion to be gained up (refer to the table in Figure 47 for the distortion gain factor for various signal gains). The addition of R_3 to the otherwise standard noninverting amplifier configuration alters the feedback factor or noise gain of the circuit. The closed-loop gain is unchanged, but the feedback available for error correction is reduced by the distortion gain factor, thus extending the resolution by the same amount. Note that the input signal and load applied to the op amp are the same as with conventional feedback without R_3 . The value of R_3 should be kept small to minimize its effect on the distortion measurements.

The validity of this technique can be verified by duplicating measurements at high gain and/or high frequency where the distortion is within the measurement capability of the test equipment. Measurements for this data sheet were made with an Audio Precision System Two distortion/noise analyzer, which greatly simplifies such repetitive

measurements. The measurement technique can,

however, be performed with manual distortion


ISTRUMENTS

CAPACITIVE LOADS

measurement instruments.

The dynamic characteristics of the OPA1662 and OPA1664 have been optimized for commonly encountered gains, loads, and operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output. The simplest way to achieve this isolation is to add a small resistor ($R_{\rm S}$ equal to 50 Ω , for example) in series with the output.

This small series resistor also prevents excess power dissipation if the output of the device becomes shorted. Figure 25 illustrates a graph of *Small-Signal Overshoot vs Capacitive Load* for several values of R_S. Also, refer to Applications Bulletin AB-028 (literature number SBOA015, available for download from the TI web site) for details of analysis techniques and application circuits.

(1) For measurement bandwidth, see Figure 7 through Figure 12.

Figure 47. Distortion Test Circuit

www.ti.com.cn ZHCS619 – DECEMBER 2011

POWER DISSIPATION

The OPA1662 and OPA1664 series op amps are capable of driving $2\text{-}k\Omega$ loads with a power-supply voltage up to ± 18 V and full operating temperature range. Internal power dissipation increases when operating at high supply voltages. Copper leadframe construction used in the OPA166x series op amps improves heat dissipation compared to conventional materials. Circuit board layout can also help minimize junction temperature rise. Wide copper traces help dissipate the heat by acting as an additional heat sink. Temperature rise can be further minimized by soldering the devices to the circuit board rather than using a socket.

ELECTRICAL OVERSTRESS

Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.

It is helpful to have a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event. Figure 48 illustrates the ESD circuits contained in the OPA166x (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where they meet at an absorption device internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.

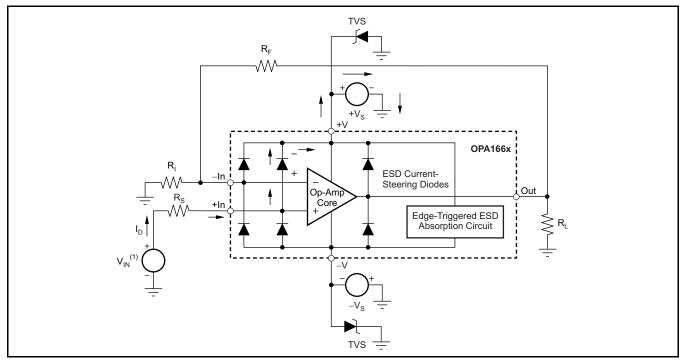
An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-current pulse as it discharges through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to prevent it from being damaged. The energy absorbed by the protection circuitry is then dissipated as heat.

When an ESD voltage develops across two or more of the amplifier device pins, current flows through one or more of the steering diodes. Depending on the path that the current takes, the absorption device may activate. The absorption device internal to the OPA166x triggers when a fast ESD voltage pulse is impressed across the supply pins. Once triggered, it quickly activates, clamping the ESD pulse to a safe voltage level.

When the operational amplifier connects into a circuit such as that illustrated in Figure 48, the ESD protection components are intended to remain inactive and not become involved in the application circuit operation. However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. Should this condition occur, there is a risk that some of the internal ESD protection circuits may be biased on, and conduct current. Any such current flow occurs through steering diode paths and rarely involves the absorption device.

Figure 48 depicts a specific example where the input voltage, V_{IN} , exceeds the positive supply voltage (+V_S) by 500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If +V_S can sink the current, one of the upper input steering diodes conducts and directs current to +V_S. Excessively high current levels can flow with increasingly higher V_{IN}. As a result, the datasheet specifications recommend that applications limit the input current to 10 mA.

If the supply is not capable of sinking the current, V_{IN} may begin sourcing current to the operational amplifier, and then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to levels that exceed the operational amplifier absolute maximum ratings. In extreme but rare cases, the absorption device triggers on while $+V_{S}$ and $-V_{S}$ are applied. If this event happens, a direct current path is established between the $+V_{S}$ and $-V_{S}$ supplies. The power dissipation of the absorption device is quickly exceeded, and the extreme internal heating destroys the operational amplifier.


Another common question involves what happens to the amplifier if an input signal is applied to the input while the power supplies $+V_S$ and/or $-V_S$ are at 0 V. Again, it depends on the supply characteristic while at 0 V, or at a level below the input signal amplitude. If the supplies appear as high impedance, then the operational amplifier supply current may be supplied by the input source via the current steering diodes. This state is not a normal bias condition; the amplifier most likely will not operate normally. If the supplies are low impedance, then the current through the steering diodes can become quite high. The current level depends on the ability of the input source to deliver current, and any resistance in the input path.

ZHCS619 – DECEMBER 2011 www.ti.com.cn

TEXAS INSTRUMENTS

If there is an uncertainty about the ability of the supply to absorb this current, external zener diodes may be added to the supply pins as shown in Figure 48.

The zener voltage must be selected such that the diode does not turn on during normal operation. However, its zener voltage should be low enough so that the zener diode conducts if the supply pin begins to rise above the safe operating supply voltage level.

(1) $V_{IN} = +V_S + 500$ mV.

Figure 48. Equivalent Internal ESD Circuitry and Its Relation to a Typical Circuit Application (Single Channel Shown)

ZHCS619 – DECEMBER 2011

APPLICATION CIRCUIT

An additional application idea is shown in Figure 49.

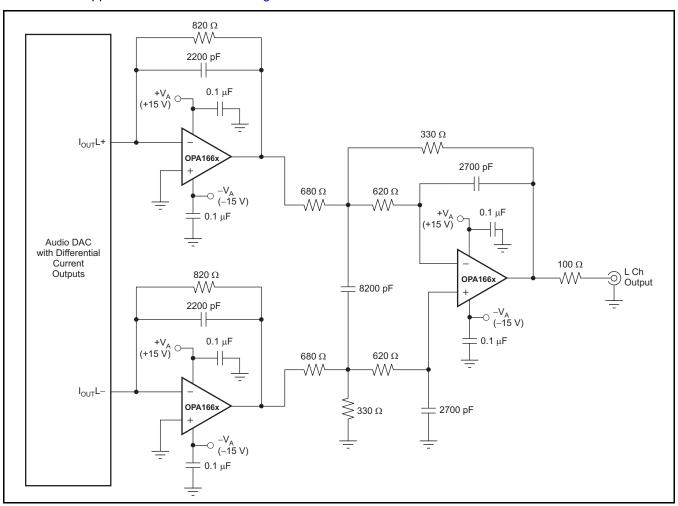


Figure 49. Audio DAC I/V Converter and Output Filter

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
OPA1662AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OP1662	Samples
OPA1662AIDGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	OUQI	Samples
OPA1662AIDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	OUQI	Samples
OPA1662AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OP1662	Samples
OPA1664AID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA1664	Samples
OPA1664AIDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA1664	Samples
OPA1664AIPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA1664	Samples
OPA1664AIPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA1664	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

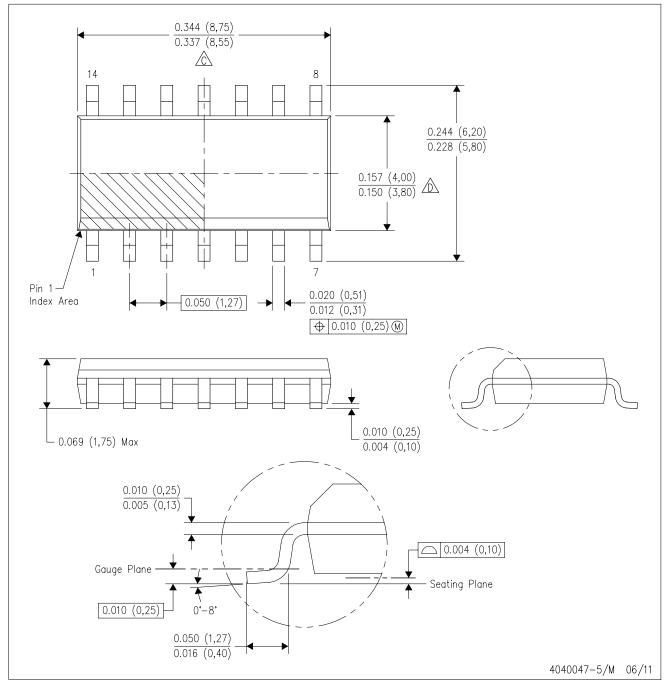
11-Apr-2013

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF OPA1662:

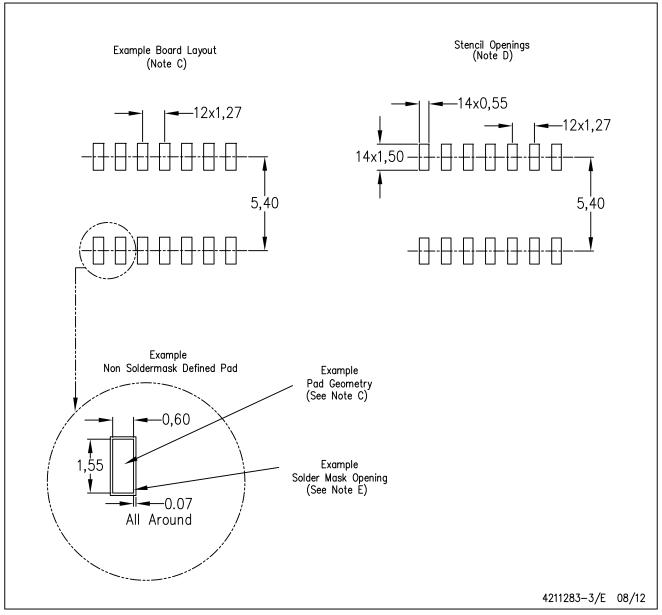

Automotive: OPA1662-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

D (R-PDSO-G14)

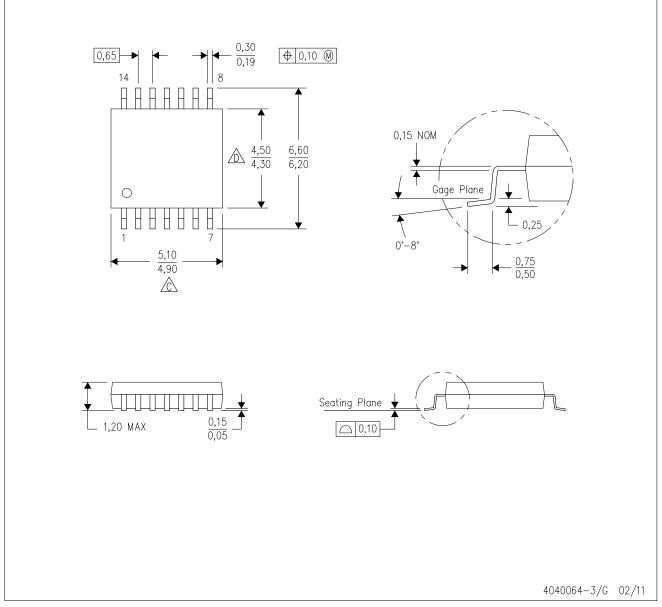
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

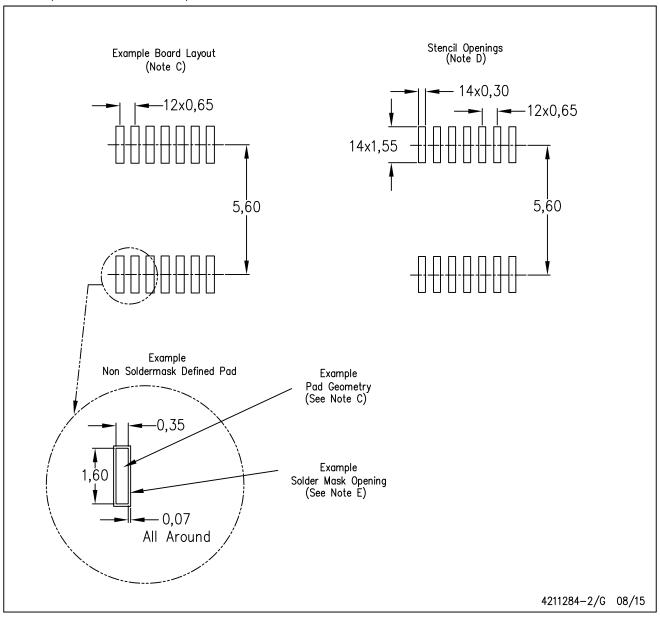
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

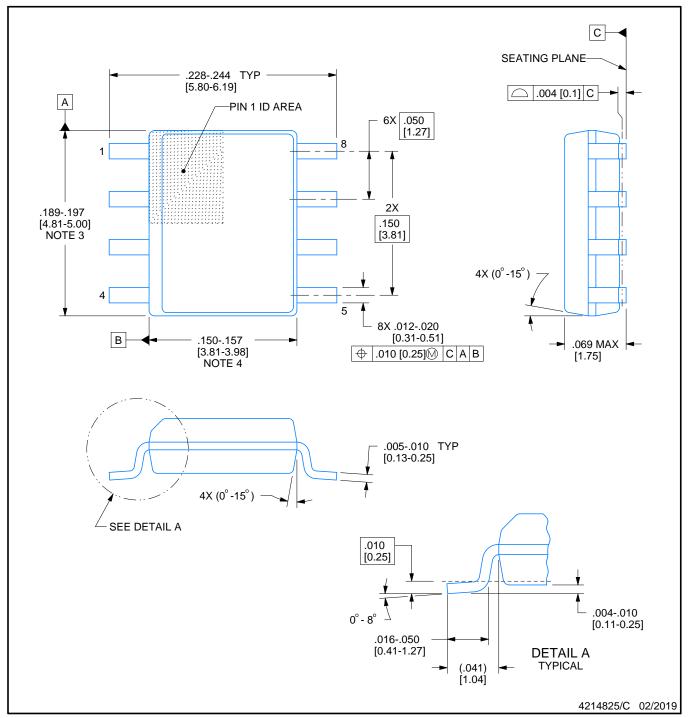
PLASTIC SMALL OUTLINE



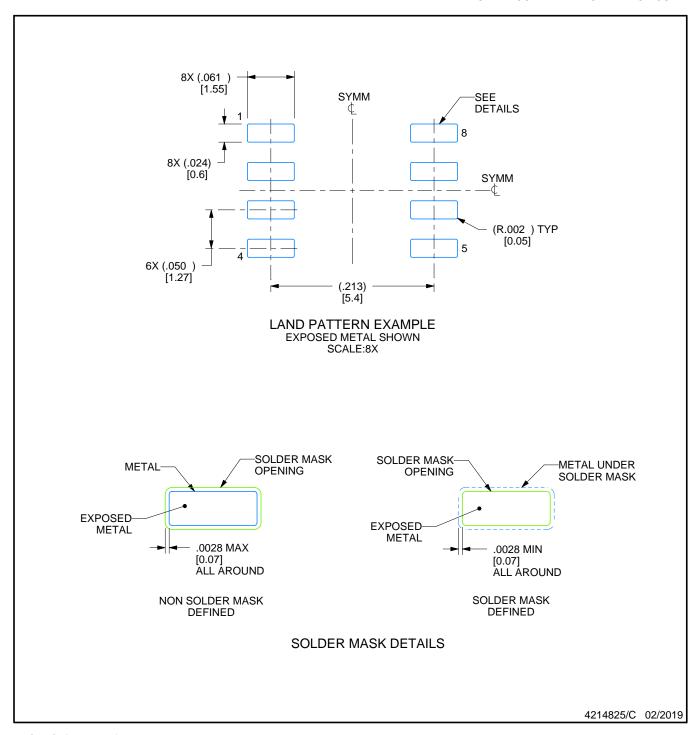
- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
 - Sody length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

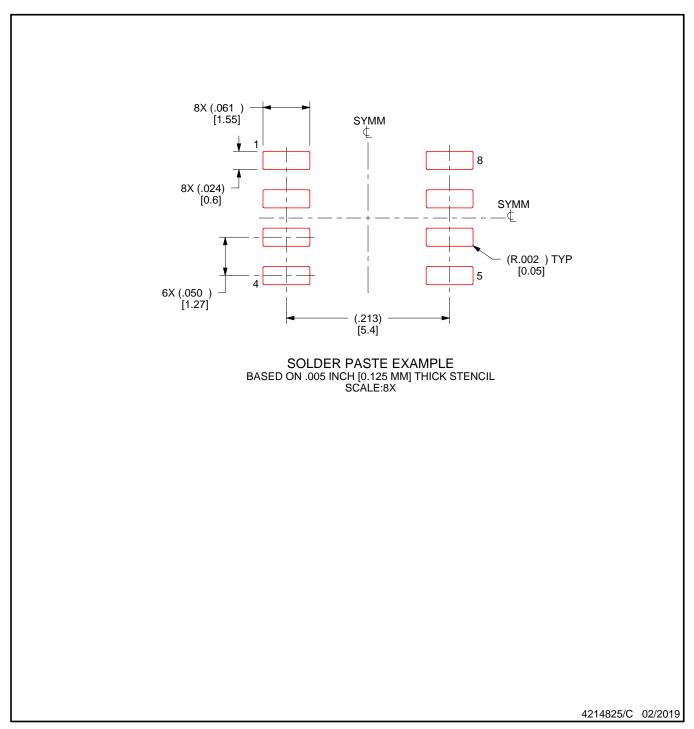


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


SMALL OUTLINE INTEGRATED CIRCUIT

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

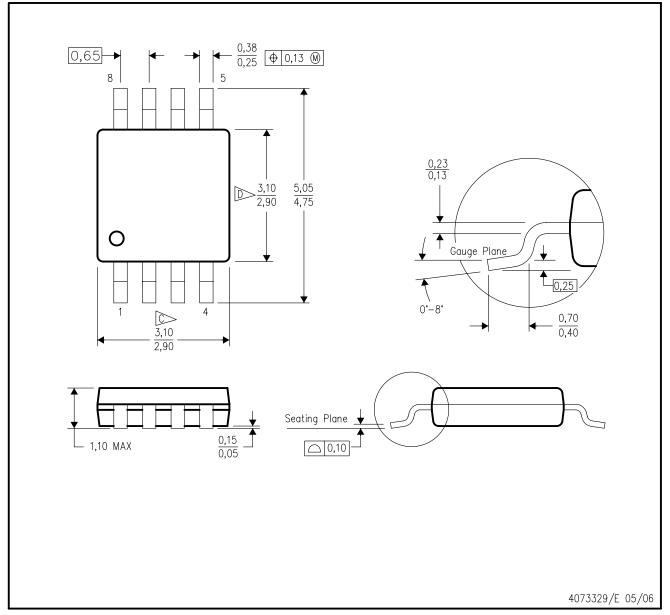
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

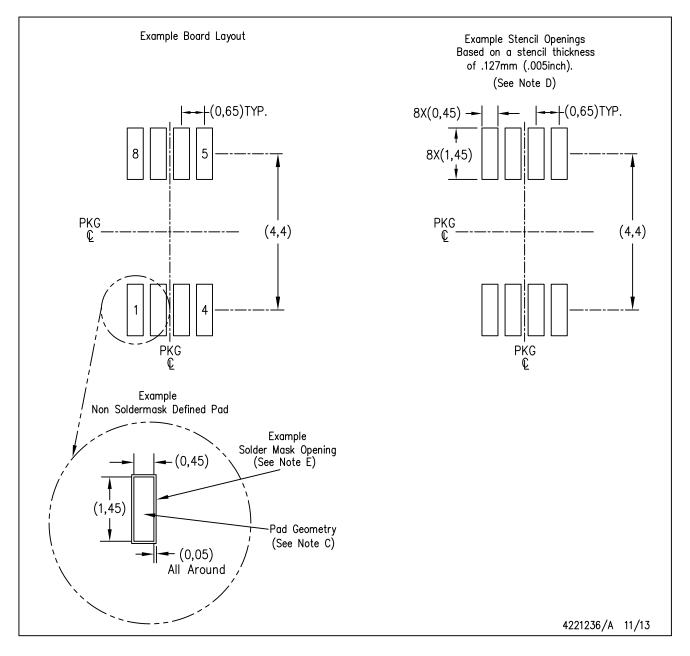
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司