

高稳定性 隔离误差放大器

ADuM4190

产品特性

稳定,不随时间和温度而变化

初始精度: 0.5% 全温度范围精度: 1% 兼容II型或III型补偿网络

基准电压: 1.225 V

兼容DOSA

低功耗工作: <7 mA(总功耗)

宽电源电压范围 V_{DD1}: 3 V至20 V

V_{DD2}: 3 V至20 V 带宽: 400 kHz

隔离电压: 5 kV rms(加强) 安全和法规认证(申请中)

UL认证:依据UL 1577, 1分钟5,000 V rms

CSA元件验收通知#5A

VDE合格证书

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12

V_{IORM} = 849 V峰值

宽温度范围

工作环境温度: -40°C 至+125°C

最高结点温度: 150℃

应用

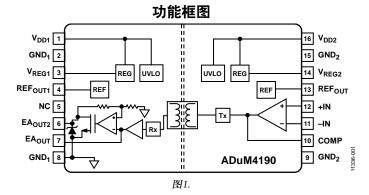
线性反馈电源

逆变器

不间断电源(UPS)

DOSA兼容模块

电压监控器


概述

ADuM41901是采用ADI公司iCoupler[®]技术的隔离误差放大器。ADuM4190非常适合用于线性反馈电源。ADuM4190的原边控制器与常用的光耦合器和分流调节器解决方案相比,在瞬态响应、功率密度和稳定性方面均有所提高。

与在整个寿命周期中和高温下具有不确定电流传输比的基于光耦合器的解决方案不同,ADuM4190的传输功能不随寿命周期而改变,在宽温度范围-40℃至+125℃内保持稳定。

ADuM4190內置宽频运算放大器,可用于各种常用的电源环路补偿技术中。ADuM4190速度足够快,允许反馈环路对快速瞬变条件和过流条件做出反应。该器件还内置一个高精度1.225 V基准电压源,可与电源输出设定点进行比较。

ADuM4190采用宽体16引脚SOIC封装,加强型隔离电压额 定值为5 kV rms。

1 受美国专利第5,952,849号、6,873,065号和7,075,329号保护,其它专利正在申请中。

Rev. 0 Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2013 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com

目录

产品特性	I
应用	1
概述	1
功能框图	1
修订历史	2
技术规格	3
封装特性	4
法规信息	4
隔离和安全相关特性	4
建议工作条件	5
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12	
绝缘特性	5
绝对最大额定值	6
ECD 敬生	6

引脚配置和功能描述	
典型性能参数	8
测试电路	12
应用信息	13
精密电路工作原理	13
隔离式放大器电路工作原理	14
应用框图	14
设置输出电压	1
DOSA模块应用	1
直流正确性和磁场抗扰度	15
隔离寿命	10
外形尺寸	17
江 脇北畫	17

修订历史 2013年7月—修订版0:初始版

技术规格

对于 $T_A = T_{MIN}$ 至 T_{MAX} , $V_{DD1} = V_{DD2} = 3$ V至20 V。所有的典型值规格在 $T_A = 25$ °C和 $V_{DD1} = V_{DD2} = 5$ V条件下测得,除非另有说明。

表1.

参数	测试条件/注释	最小值	典型值	最大值	单位
f度 (1.225 V – EA _{out})/1.225 V × 100%,见图27					
初始误差	T _A = 25°C		0.25	0.5	%
总误差	$T_A = T_{MIN} \underline{\Sigma} T_{MAX}$		0.5	1	%
三二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	TA TWING TWAN		0.5		70
		-5		+5	m)/
失调误差			±2.5	+5	mV
开环增益		66	80		dB
输入共模范围		0.35		1.5	V
增益带宽积			10		MHz
共模抑制			72		dB
输入电容			2		pF
输出电压范围	COMP引脚	0.2		2.7	V
输入偏置电流			0.01		μΑ
基准电压源					1
输出电压	0 mA至1 mA 负载, C _{REFOUT} = 15 pF				
111日七庄	T _A = 25°C	1.215	1.225	1.235	V
de alla da San	T _A = T _{MIN} 至T _{MAX}	1.213	1.225	1.237	٧ .
输出电流	C _{REFOUT} = 15 pF	2.0			mA
JVLO					
趋正阈值			2.8	2.96	V
趋负阈值		2.4	2.6		V
EA _{out} 阻抗	V _{DD2} 或V _{DD1} < UVLO阈值		高阻态		Ω
输出特性	参见图29				
输出增益1	From COMP至EAout, 0.3 V至2.4 V, ±3 mA	0.83	1.0	1.17	V/V
1100 Eed., Ed. 2007	From EA _{Оит} 至EA _{Оит2} , 0.4 V至5.0 V, ±1 mA, V _{DD1} = 20 V	2.5	2.6	2.7	V/V
输出失调电压	COMP至EA _{OUT} ,0.3 V至2.4 V,±3 mA	-0.4	+0.05	+0.4	V
III III JVVVI OZE	EA_{OUT} 至 EA_{OUT} , 0.4 V至5.0 V, ±1 mA, $V_{DD1} = 20 \text{ V}$	-0.1	+0.01	+0.1	V
输出线性度2	COMP至EA _{OIII} ,0.3 V至2.4 V,±3 mA	-1.0	+0.15	+1.0	%
	EA_{OUT} ΞEA_{OUT} , 0.4 V $\Xi 5.0 V$, ± 1 mA, $V_{DD1} = 20 V$	-1.0	+0.1	+1.0	%
输出−3 dB带宽	COMP至EA _{OUT} , 0.3 V至 2.4 V, ± 3 mA, COMP至EAOUT2, 0.4 V至 5.0 V, ± 1 mA, $V_{DD1} = 20$ V				
A、S级		100	200		kHz
B、T级		250	400		kHz
输出电压EA _{out}	±3 mA输出				
低电压				0.4	V
高电压		2.4	2.5	0.1	V
	+1 m \ \tau \\ \tau \ \tau \\ \tau \ \tau \\ \tau \	۷.4	۷.5		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
输出电压EA _{OUT2}	±1 mA输出		0.2	0.6	
低电压	V _{DD1} = 4.5 V至 5.5 V		0.3	0.6	V
	V _{DD1} =10 V至20 V		0.3	0.6	V
高电压	V _{DD1} =10 V至20 V	4.8	4.9		V
	V _{DD1} = 10 V至20 V	5.0	5.4		V
噪声EA _{out}	参见图15		1.7		mV rms
噪声EA _{OUT2}	参见图15		4.8		mV rms
工作范围,第1侧	V_{DD1}	3.0		20	V
工作范围,第2侧	V _{DD2}	3.0		20	V
— II IS — 7 717 = 1714				-	1 1

参数 测试条件/注释 :		最小值	典型值	最大值	单位
电源抑制	直流, V _{DD1} = V _{DD2} = 3 V至20 V	60			dB
电源电流					
I_{DD1}	参见图4		1.4	2.0	mA
I_{DD2}	参见图5		2.9	5.0	mA

 $^{^1}$ 输出增益定义为额定输入范围内,输出电压与输入电压关系的最契合曲线之斜率(失调误差被校准掉)。 2 输出线性度定义为输出增益的最契合曲线峰峰值输出偏差,以满量程输出电压的百分比表示。

封装特性

表2.

参数	符号	最小值 典型值 最大值	单位	测试条件/注释
电阻				
输入至输出1	R _{I-O}	10 ¹³	Ω	
电容				
输入至输出1	C _{I-O}	2.2	pF	f = 1 MHz
输入电容 ²	Cı	4.0	pF	
IC结至环境热阻	θ_{JA}	45	°C/W	IC结至环境热阻

¹ 假设器件为双端器件,引脚1至引脚8短接,引脚9至引脚16短接。 ² 输入电容是从任意输入引脚到地的容值。

法规信息

ADuM4190正在申请表3所列机构的认可。关于特定交叉隔离波形和绝缘水平下的推荐最大工作电压,请参阅表8和"绝缘寿命" 部分。

表3.

UL(申请中)	CSA(申请中)	VDE(申请中)
UL 1577器件认可程序认可1	CSA元件验收通知#5A批准	DIN V VDE V 0884-10 (VDE V 0884-10)认证:
		2006-12 ²
单一保护5,000 V rms 隔离电压, 16引脚SOIC	加强绝缘符合CSA 60950-1-03和IEC 60950-1 标准,400 V rms(565 V峰值)最大工作电压 基本绝缘符合CSA 60950-1-03和IEC 60950-1 标准,800 V rms(1,131 V峰值)最大工作电压	加强绝缘,849 V峰值
文件E214100	文件205078	文件2471900-4880-0001

¹依据UL1577,每个ADuM4190都经过1秒钟绝缘测试电压≥6,000 V rms的验证测试(漏电流检测限值为10µA)

隔离和安全相关特性

表4.

参数	符号	数值	单位	测试条件/注释
额定电介质隔离电压		5000	V rms	持续1分钟
最小外部气隙(间隙)	L(I01)	8.0(最小值)	mm	测量距离从输入端至输出端,沿PCB安装 层的空气最短距离,作为PCB布局的辅助 手段
最小外部气隙(间隙)	L(I02)	8.3(最小 值)	mm	测量输入端至输出端,沿壳体最短距离
最小内部间隙		0.017(最 小值)	mm	隔离距离
漏电阻抗(相对漏电指数)	СТІ	>400	V	DIN IEC 112/VDE 0303第1部分
隔离组		II		材料组DIN VDE 0110, 1/89, 表1

² 依据DIN V VDE V 0884-10 (VDE V 0884-10):2006-12,每个ADuM4190都经过1秒钟绝缘测试电压≥1,590 V峰值的验证测试(局部放电检测限值为5 pC)。器件标识 中的星号(*)表示通过DIN V VDE V 0884-10 (VDE V 0884-10):2006-12认证。

建议工作条件

表5.

参数	符号	最小值	最大值	单位
工作温度	T _A			
ADuM4190A/ADuM4190B		-40	+85	°C
ADuM4190S/ADuM4190T		-40	+125	°C
电源电压1	V_{DD1}, V_{DD2}	3.0	20	V
输入信号上升和下降时间	t _R , t _F		1.0	ms

¹ 所有电压均参照各自的地。

DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12隔离特性

此隔离器适合安全限制数据范围内的增强隔离。通过保护电路保持安全数据。器件标识中的星号(*)表示通过DIN V VDE V 0884-10 (VDE V 0884-10):2006-12的849 V峰值工作电压认证。

表6.

说明	测试条件/注释	符号	特性	单位
DIN VDE 0110装置分类				
额定电源电压≤150 V rms			I至IV	
额定电源电压≤300 V rms			I至III	
额定电源电压≤400 V rms			I至II	
环境分类			40/105/21	
污染度(DIN VDE 0110,表1)			2	
最大工作绝缘电压		VIORM	849	V峰值
输入至输出测试电压,方法B1	V _{IORM} × 1.875 = V _{pd} (m),100%生产测试,	$V_{pd(m)}$	1592	V峰值
	t _{ini} = 60秒,t _m = 10秒,局部放电 < 5 pC			
输入至输出测试电压,方法A				
跟随环境测试,子类1	V _{IORM} × 1.5 = V _{pd} (m), t _{ini} = 60秒, t _m = 10秒, 局部放电 < 5 pC	$V_{pd(m)}$	1273	V峰值
跟随输入和/或安全测试,子类2和子类3	V _{IORM} ×1.2=V _{pd} (m), t _{ini} =60秒, t _m =10秒, 局部放电<5pC	$V_{pd(m)}$	1018	V峰值
最高允许过压		V _{IOTM}	6000	V峰值
浪涌隔离电压	V峰值 = 10 kV, 1.2 μs上升时间, 50 μs, 50% 下降时间	V _{IOSM}	6000	V峰值
安全限值	出现故障时允许的最大值(见图2)			
最高结温		Ts	150	°C
总安全功耗		Ps	2.78	W
T。上的绝缘电阻	$V_{10} = 500 \text{ V}$	Rs	>109	Ω

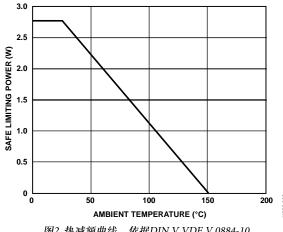


图2. 热减额曲线,依据DIN V VDE V 0884-10 获得的安全限值与壳温的关系 Rev. 0 | Page 5 of 20

绝对最大额定值

除非另有说明, T_A = 25℃。

表7.

201	
参数	额定值
存储温度(T _{st})范围	-65°C至+150°C
工作环境温度(TA)范围	-40°C至+125°C
结温范围	-40°C至+150°C
电源电压	
V_{DD1} , V_{DD2}	−0.5 V至+24 V
V_{REG1} , V_{REG2}	−0.5 V至+3.6 V
输入电压(+IN、-IN)	−0.5 V至+3.6 V
输出电压	
REF _{out} , REF _{out1} , COMP,	−0.5 V至+3.6 V
EA _{out}	−0.5 V至+5.5 V
每个输出引脚上的输出电流	−11 mA至+11 mA
共模瞬变2	-100 kV/μs 至+100 kV/μs

¹ 所有电压均参照各自的地。

注意,超出上述绝对最大额定值可能会导致器件永久性损坏。这只是额定最值,不表示在这些条件下或者在任何其它超出本技术规范操作章节中所示规格的条件下,器件能够正常工作。长期在绝对最大额定值条件下工作会影响器件的可靠性。

ESD警告

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。尽管本产品具有专利或专有保护电路,但在遇到高能量ESD时,器件可能会损坏。因此,应当采取适当的ESD防范措施,以避免器件性能下降或功能丧失。

表8. 最大连续工作电压1

参数	最大值	单位	约束条件		
交流电压, 双极性波形	560	V峰值	最少50年寿命		
交流电压, 单极性波形	1131	V峰值	最少50年寿命		
直流电压	1131	V峰值	最少50年寿命		

¹指隔离栅上的连续电压幅度。详见"隔离寿命"部分。

² 指隔离栅上的共模瞬变。超过绝对最大额定值的共模瞬变可能导致闩锁或永久损坏。

引脚配置和功能描述

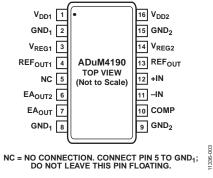


图3. 引脚配置

表9. 引脚功能描述

引脚编号	引脚名称	说明
1	V _{DD1}	第1侧的电源电压(3 V至20 V)。在V _{DD} 和GND1之间连接一个1 μF电容。
2, 8	GND₁	第1侧的接地基准。
3	V_{REG1}	第1侧的内部电源电压。在V _{REGI} 和GND1之间连接一个1 μF电容。
4	REF _{OUT1}	第1侧的基准输出电压。此引脚(C _{REFOUTI})建议的最大电容值为15 pF。
5	NC	不连接。将引脚5连接至GND1,不要悬空该引脚。
6	EA _{OUT2}	隔离输出电压2,开漏输出。对于最高1 mA的电流,可在EA _{outz} 和VDD1之间连接一个上拉电阻。
7	EA _{OUT}	隔离输出电压。
9, 15	GND_2	第2侧的接地基准。
10	COMP	运算放大器的输出。可在COMP引脚和-IN引脚之间连接一个环路补偿网络。
11	-IN	运算放大器的输出。可在COMP引脚和-IN引脚之间连接一个环路补偿网络。
12	+IN	同相运算放大器输入。引脚12可用作基准电压输入。
13	REFout	第2侧的基准输出电压。此引脚(C _{REFOUT})建议的最大电容值为15 pF。
14	V_{REG2}	第2侧的内部电源电压。在V _{REG2} 和GND2之间连接一个1 μF电容。
16	V_{DD2}	第2侧的电源电压(3 V至20 V)。在V _{DD2} 和GND2之间连接一个1 μF电容。

典型性能参数

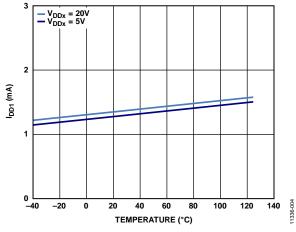


图4. 典型I_{DDI}电源电流与温度的关系

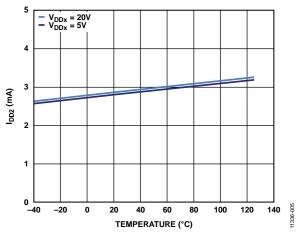


图5. 典型I_{DD2}电源电流与温度的关系

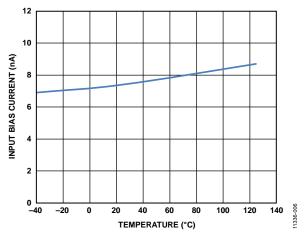


图6. 输入偏置电流+IN、-IN与温度的关系

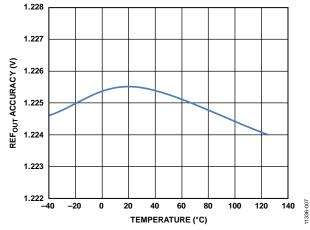


图7. REF_{OUT}精度与温度的关系

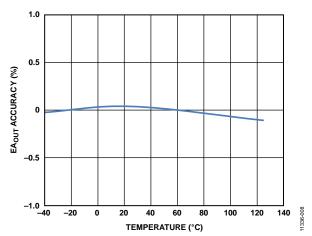


图8. EA_{OUT}精度与温度的关系

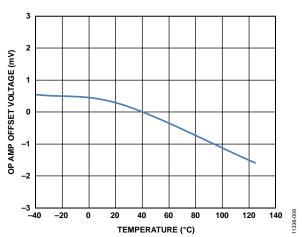


图9. 运算放大器失调电压与温度的关系

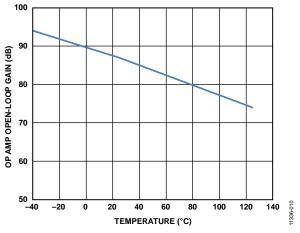


图10. 运算放大器开环增益与温度的关系

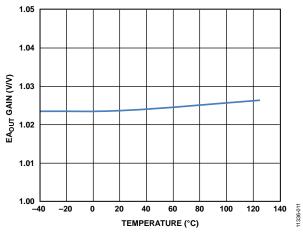


图11. EA_{OUT}增益与温度的关系

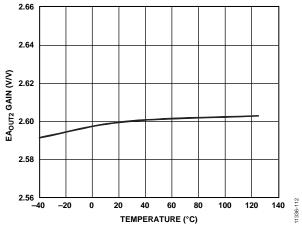


图12. EA_{OUT2}增益与温度的关系

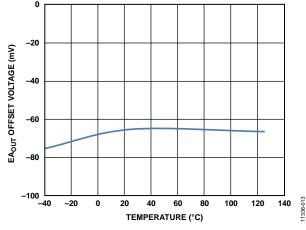


图13. EA_{OUT}失调电压与温度的关系

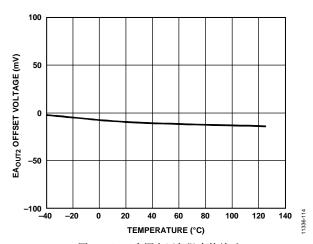
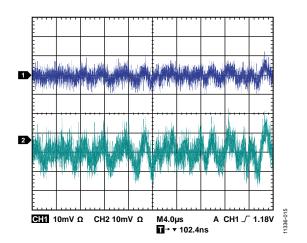
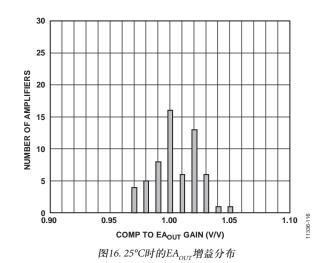
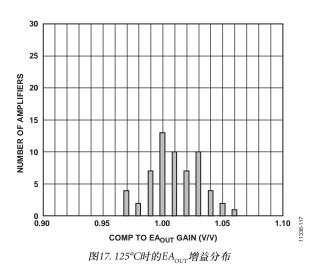
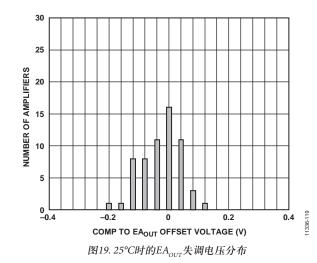
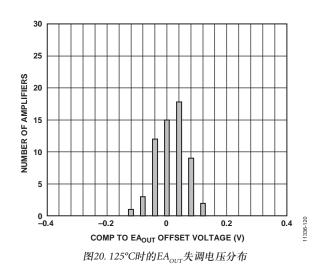
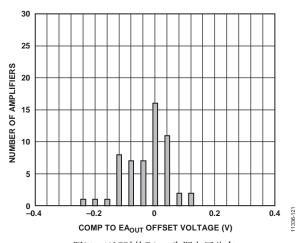


图14. EA_{OUT2}失调电压与温度的关系


图15. 输出噪声,测试电路1 (10 mV/DIV), 通道 $1 = EA_{OUT}$,通道 $2 = EA_{OUT2}$



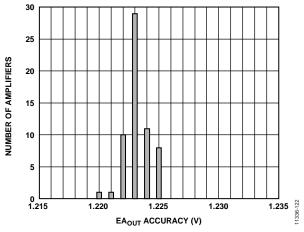


图22.25°C时的EA_{OUT}精确电压分布

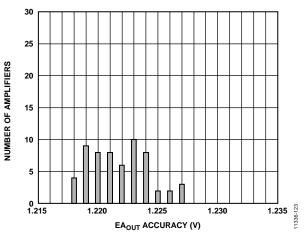


图23.125°C时的EA_{OUT}精确电压分布

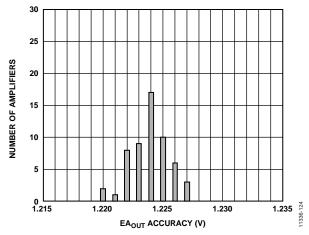


图24.-40°C时的EA_{OUT}精确电压分布

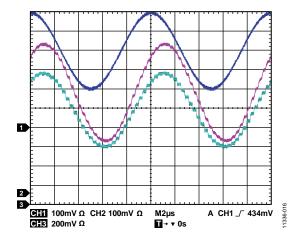


图25. 输出100 kHz信号,测试电路3,通道1=+IN,通道 $2=EA_{OUT}$,通道 $3=EA_{OUT2}$

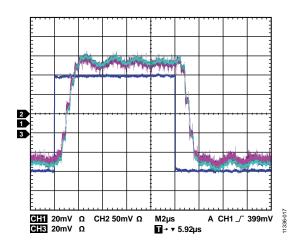


图26. 输出方波响应,测试电路3,通道1 = +IN,通道 $2 = EA_{OUT}$,通道 $3 = EA_{OUT2}$

测试电路

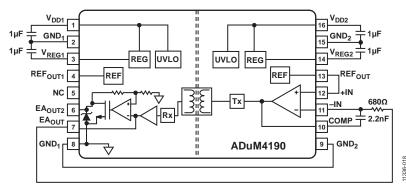


图27. 测试电路1: 使用EA_{OUT}的精确电路

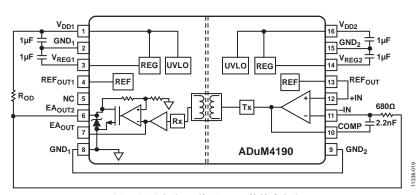


图28. 测试电路2: 使用EA_{OUT2}的精确电路



图29. 测试电路3: 隔离式放大器电路

应用信息

在ADuM4190测试电路中(见图27到图29),为V_{DD1}和V_{DD2} 引脚提供3 V至20 V外部电源电压,同时内部稳压器提供 ADuM4190每一侧的内部电路工作所需的3.0 V电压。内部精密1.225 V基准电压源为隔离误差放大器提供±1%精度。UVLO 电路监控V_{DDx}电源,当达到2.8 V的上升阈值时打开内部电路;当V_{DDx}下降至2.6 V以下时将误差放大器关闭至高阻抗状态。

ADuM4190右侧的运算放大器具有同相引脚+IN和反相引脚-IN,可用于隔离DC-DC转换器输出的反馈电压连接(通常使用分压器实现连接)。COMP引脚为运算放大器输出,在补偿网络中可连接电阻和电容元件。COMP引脚从内部驱动Tx发送器模块,将运算放大器输出电压转换为编码输出,用于驱动数字隔离变压器。

在ADuM4190的左侧,变压器输出PWM信号,通过Rx模块解码,将信号转换为电压,驱动放大器模块,放大器模块产生EA_{OUT}引脚上的误差放大器输出。EA_{OUT}引脚可提供±3 mA电流,电压范围为0.4 V至2.4 V,通常用来驱动DC-DC电路中的PWM控制器输入。

对于需要更多输出电压以驱动控制器的应用,可以使用 EA_{OUT2}引脚(见图28)。EA_{OUT2}引脚提供高达±1 mA电流,输 出电压范围为0.6 V至4.8 V,其输出针对5 V电源提供上拉 电阻。若EA_{OUT2}上拉电阻连接10 V至20 V电源,则输出的最 小额定值为5.0 V,以便允许使用最小输入电压要求为5 V的 PWM控制器。

精密电路工作原理

精密电路的工作原理见图27和图28。从-IN引脚至COMP引脚为ADuM4190右侧的运算放大器,单位增益带宽(UGBW)为10 MHz。图30(波特图1)以虚线表示单独的运算放大器及其10 MHz极点。

图30还显示了单独的线性隔离器(运算放大器输出与ADuM4190输出之间的模块,标记为线性隔离器),它在400 kHz左右产生极点。该运算放大器和线性隔离器的总波特图显示交越频率之前,-IN引脚至EA_{OUT}引脚的相位偏移约为-180°。由于-180°相移可让系统不稳定,增加一个积分器配置(由2.2 nF电容和680 Ω电阻组成)有助于使系统稳定(见图27和图28)。

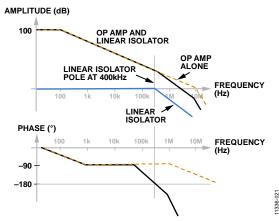


图30. 波特图1: 运算放大器和线性隔离器

图31(波特图2)中增加了带积分器配置的情形,系统在 $100\,\mathrm{kHz}$ 左右的交越为 $0\,\mathrm{dB}$,但由于相移约为 -120° ,相位裕量为 60° ,系统更稳定。此电路仅用于精度测试,不可用于实际应用中,因为其隔离栅上的电阻为 $680\,\Omega$,封闭了误差放大器环路,此电阻导致泄漏电流流过隔离栅。仅就此测试电路而言, $\mathrm{GND_1}$ 必须连接 $\mathrm{GND_2}$,为 $680\,\Omega$ 电阻造成的泄漏电流建立返回路径。

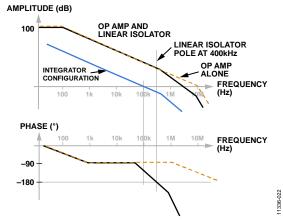
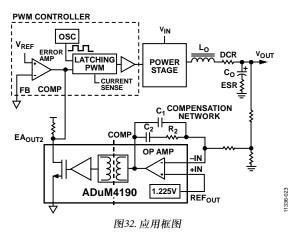


图31. 波特图2: 带积分器配置的运算放大器和线性隔离器

隔离式放大器电路工作原理


图29显示隔离式放大器电路。在该电路中,输入端的放大器设为单位增益缓冲器,使EA_{OUT}输出跟随+IN输入。 EA_{OUT}输出跟随EA_{OUT}输出,但电压增益为2.6。

该电路具有开漏输出,应通过某一电阻值(该值针对最高 1 mA的输出电流设置)将其上拉至3 V到20 V范围内电源电压。EA_{OUT2}输出可用来驱动最高1 mA的器件输入电流,该器件要求最低输入电压为5 V。EA_{OUT2}电路具有内部二极管箝位功能,保护内部电路免受5 V以上电压的损害。

使用该测试电路的EA_{OUT}和EA_{OUT2}增益、失调与线性度见表1。使用隔离式放大器设计电压监控应用时,请查看这些规格,注意隔离式误差放大器的1%精度规格并不适用。此外,图29中的EA_{OUT}电路采用可选外部RC低通滤波器,其转折频率为500 kHz,可降低从内部电压到PWM控制器的3 MHz输出噪声。

应用框图

图32显示ADuM4190的典型应用:在原边控制中采用隔离式误差放大器。

ADuM4190运算放大器用作输出电压V_{out}的误差放大器反馈,并在运算放大器的-IN引脚上使用一个电阻分压器。与+IN引脚相比,此配置反转COMP引脚的输出信号,该引脚连接内部1.225 V基准电压。

如果输出电压 V_{OUT} 由于负载阶跃而下降,则-IN引脚的分压器下降至低于+IN基准电压,导致COMP引脚的输出信号变为高电平。

先对运算放大器的COMP输出编码,然后数字隔离变压器模块将其解码,变回可将ADuM4190驱动至高电平的信号。ADuM4190输出驱动PWM控制器的COMP引脚,该引脚设计为仅在低电平时将PWM锁存输出复位至低电平。PWM控制器的COMP引脚高电平使锁存PWM比较器产生PWM占空比输出。此PWM占空比输出驱动电源级,提升Vour电压,直到其返回稳压状态。

电源级的输出由输出电容过滤,某些情况下也可由一个电感过滤。控制环路的增益和相位以及稳定性受多种因素的影响。输出滤波器组件(LO和CO)建立双极点;运算放大器在10 MHz处有一个极点(见图30),线性隔离器在400 kHz处有一个极点(见图30和图31)。

输出电容和其ESR能够以依赖于元件类型和数值的频率添加零点。由于ADuM4190具有误差放大器,从-IN引脚到COMP引脚具有补偿网络,补偿控制环路的稳定性。补偿网络的数值同时取决于应用和所选元器件,有关元器件的网络值可参见所选PWM控制器的数据手册。

ADuM4190具有两个不同的误差放大器输出: EA_{OUT}和 EA_{OUT2}。EA_{OUT}输出可驱动±3 mA电流,其保证最大高输出电压至少为2.4 V,但可能不足以驱动某些PWM控制器的COMP 引脚。EA_{OUT2}引脚可驱动±1 mA电流,其输出范围保证具有5.0 V电压(V_{DD1}电压范围为10 V至20 V),可用于很多PWM控制器的COMP引脚。

图32显示如何在隔离式DC-DC转换器的控制环路中使用ADuM4190提供隔离式反馈。在本应用框图中,环路大致在1.225 V基准电压处闭合,因此可在温度范围内提供±1%精度。ADuM4190运算放大器具有10 MHz高增益带宽,允许DC-DC转换器以高开关速率工作,支持较小的输出滤波器组件值(LO和CO)。

ADuM4190误差放大器的400 kHz输出相比典型的分流调节器和光耦合器解决方案具有更快的环路响应、更佳的瞬态响应,而典型解决方案带宽最大值通常仅有25 kHz至50 kHz。

设置输出电压

图32所示应用电路中的输出电压可通过分压器的两个电阻设置,如图33所示。

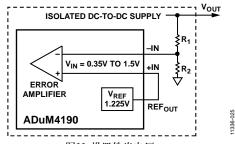


图33. 设置输出电压

输出电压可通过以下公式确定:

$$V_{OUT} = V_{REF} \times (R_1 + R_2)/R_2$$

其中, $V_{RFF} = 1.225 \,\mathrm{V}_{\circ}$

DOSA模块应用

图34是分布式电源开放标准联盟(DOSA)电路的功能框图,采用了ADuM4190。该功能框图显示如何在DOSA标准电源模块电路中使用ADuM4190的1.225 V基准电压源和误差放大器,并通过电阻组合产生输出电压设置。

ADuM4190的1.225 V基准电压源在-40°C至+125°C温度范围内的额定值为±1%。参见表10选择电阻值,设置模块的输出电压。

可实现两个不同的 $V_{\rm OUT}$ 范围,即 $V_{\rm OUT}>1.5$ V或 $V_{\rm OUT}<1.5$ V,具体取决于所需的模块。表10显示针对 $V_{\rm OUT}>1.5$ V和 $V_{\rm OUT}<1.5$ V范围的两组电阻值,第二组电阻值(使用5.11 kΩ电阻的那组数值)相比第一组,功耗更低。

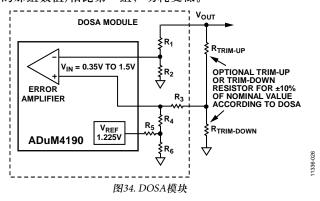


表10. DOSA模块电阻值

模块 标称输出	R3	R4	R5	R6
V _{OUT} > 1.5 V	1 kΩ	1 kΩ	0Ω	禁用
$V_{\text{OUT}} < 1.5 \text{ V}$	1 kΩ	0Ω	2.05 kΩ	1.96 kΩ
$V_{\text{OUT}} > 1.5 \text{ V}$	5.11 kΩ	5.11 kΩ	0Ω	禁用
$V_{\text{OUT}} < 1.5 \text{ V}$	5.11 kΩ	0Ω	10.5 kΩ	10.0 kΩ

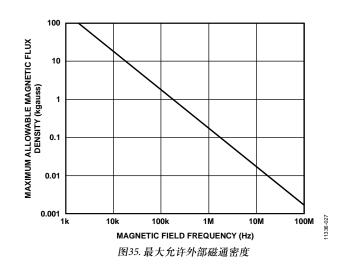
直流正确性和磁场抗扰度

在隔离器输入端的正负逻辑电平转换会使一个很窄的(约 1 ns)脉冲通过变压器被送到解码器。解码器是双稳态的,因此,可以被这个脉冲置位或复位,表示输入逻辑的转换。如果解码器在大约3 μs以后没有接收到内部脉冲,输入侧则认为没有供电或者无效,在这种情况下,隔离器的输出被看门狗计时电路强制设置为默认高电平状态。此外,当电源电压小于UVLO阈值时,输出端处于默认高阻抗状态。

ADuM4190具有抗扰性能,不易受外部磁场的影响。 ADuM4190磁场抗扰度的限制是由变压器接收线圈中的感应电压的状态决定的,电压足够大就会错误地置位或复位解码器。下面的分析说明此情况发生的条件。检查ADuM4190的3 V工作条件,因为内部调节器提供该器件每一侧的内部电路工作所需的3 V电压。

变压器输出端的脉冲幅度大于1.0 V。解码器的检测阈值大约是0.5 V,因此有一个0.5 V的噪声容限。接收线圈上的感应电压由以下公式计算:

$$V = (-d\beta/dt) \sum_{n} \pi r_n^2, n = 1, 2, \dots, N$$


其中:

β是磁通密度(高斯)。

 $r_{\rm m}$ 是接收线圈第n圈的半径(cm)。

N是接收线圈匝数。

给定ADuM4190接收线圈几何形状及感应电压,解码器最多能够有0.5V余量的50%,允许的最大磁场见图35所示计算。

例如,在1MHz的磁场频率下,最大允许0.2K高斯的磁场在接收线圈可以感应出0.25V的电压。该电压大约是检测阈值的50%并且不会引起输出转换错误。同样,如果这样的情况在发送脉冲时发生(最差的极性),这会使接收到的脉冲从大于1.0 V下降到0.75 V,这仍然高于解码器检测阈值0.5 V。

先前的磁通密度值对应于与ADuM4190变压器相隔给定距离的电流幅度。图36显示这些允许的电流幅度与所选距离条件下频率的函数关系。如图36所示,ADuM4190具有抗干扰性能,仅在离器件很近的高频、大电流条件下才会受影响。以频率为1 MHz的应用为例,0.7 kA电流必须在距离ADuM4190 5mm以外的时候才不会影响器件工作。

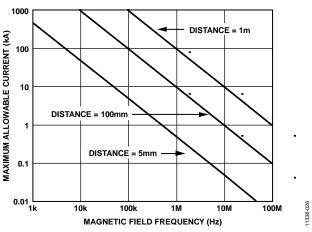


图36. 不同电流至ADuM4190距离下的最大允许电流

隔离寿命

所有的隔离结构在长时间的电压作用下,最终会被破坏。隔离衰减率由施加在隔离层上的电压波形特性决定。除了监管机构所执行的测试外,ADI公司还进行一系列广泛的评估来确定ADuM4190内部隔离结构的寿命。

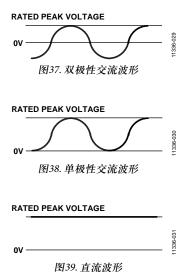

ADI公司使用超过额定连续工作电压的电压执行加速寿命测试。确定多种工作条件下的加速系数,利用这些系数可以计算实际工作电压下的失效时间。

表8中显示的值总结了双极性交流工作条件下50年工作寿命的峰值电压。许多情况下,认可工作电压高于50年工作寿命电压。某些情况下,在这些高工作电压下工作会导致隔离寿命缩短。

ADuM4190的隔离寿命由施加在隔离栅上的电压波形决定。iCoupler结构的隔离度以不同速率衰减,这由波形是否为双极性交流、单极性交流或直流决定。图37、图38和图39显示这些不同隔离电压的波形。

双极性交流电压环境对于iCoupler产品而言是最差的情况,ADI公司推荐的最大工作电压对应的工作寿命为50年。在单极性交流或者直流电压的情况下,隔离应力显然低得多。此工作模式在能够获得50年工作时间的前提下,允许更高的工作电压。任何与图38或图39不一致的交叉隔离电压波形都应被认为是双极性交流波形,其峰值电压应限制在表8中列出的50年工作寿命电压以下。

请注意,图38所示的正弦电压波形仅作为示例提供,它代表任何在0 V与某一限值之间变化的电压波形。该限值可以为正值或负值,但电压不能穿过0 V。

外形尺寸

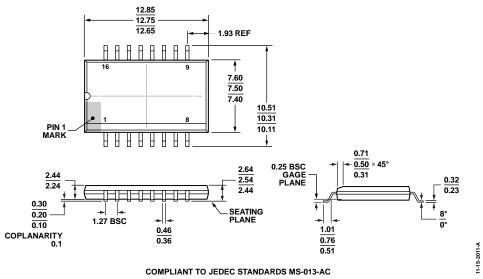


图40.16引脚标准小型封装,具有增强的爬电性能[SOIC_IC] 宽体 (RI-16-2) 图示尺寸单位: mm

订购指南

型号1,2	温度范围	带宽(典型值)	封装描述	封装选项
ADuM4190ARIZ	-40°C至+85°C	200 kHz	16引脚 SOIC_IC	RI-16-2
ADuM4190ARIZ-RL	-40°C至+85°C	200 kHz	16引脚 SOIC_IC	RI-16-2
ADuM4190BRIZ	-40°C至+85°C	400 kHz	16引脚 SOIC_IC	RI-16-2
ADuM4190BRIZ-RL	-40°C至+85°C	400 kHz	16引脚 SOIC_IC	RI-16-2
ADuM4190SRIZ	-40°C至+125°C	200 kHz	16引脚 SOIC_IC	RI-16-2
ADuM4190SRIZ-RL	-40℃至+125℃	200 kHz	16引脚 SOIC_IC	RI-16-2
ADuM4190TRIZ	-40°C至+125°C	400 kHz	16引脚 SOIC_IC	RI-16-2
ADuM4190TRIZ-RL	-40℃至+125℃	400 kHz	16引脚 SOIC_IC	RI-16-2
EVAL-ADuM3190EBZ			评估板	

¹ Z = 符合RoHS标准的器件。 ² EVAL-ADuM3190EBZ可用来评估ADuM3190和ADuM4190。

注释

注释

Λ	n.	· N	14 1	0	N
H	u	UΙΝ	/I4 I	J	U

注释

