
Features

- ► High gain
- Single positive supply voltage
- ► Low current consumption
- ▶ Pb-free RoHs compliant 3x3 QFN package

Description

The CMD231C3 is a wideband GaAs MMIC driver amplifier housed in a leadless 3x3 mm surface mount package. The CMD231C3 is ideally suited for military, space and communications systems where small size and high linearity are needed. At 4 GHz the device delivers greater than 14.5 dB of gain with a corresponding output 1 dB compression point of +13.5 dBm and an output IP3 of 23.5 dBm. The CMD231C3 is a 50 ohm matched design which eliminates the need for external DC blocks and RF port matching.

CMD231C3 2-6 GHz Driver Amplifier

<i>Electrical Performance</i> - V_{dd} = 3.0 V to 8.0 V, T_A = 25 °C, F=4 GHz				
Parameter	Min	Тур	Max	Units
Frequency Range	2 - 6		GHz	
Gain	14.5 d		dB	
Input Return Loss		15		dB
Output Return Loss		10		dB
Output P1dB		13.5		dBm
Output IP3		23.5		dBm
Supply Current		45		mA

ver 1.1 1017

Specifications

Absolute Maximum Ratings

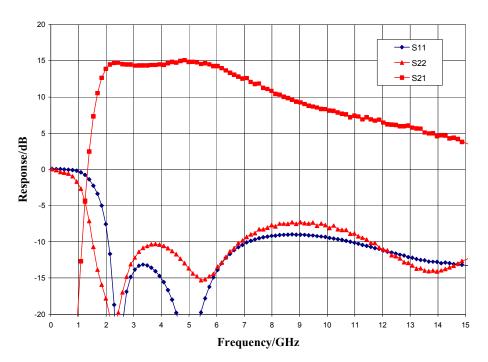
Parameter	Rating	
Drain Voltage, Vdd	9 V	
RF Input Power	+20 dBm	
Channel Temperature, Tch	150 °C	
Power Dissipation, Pdiss	919 mW	
Thermal Resistance	70.7 °C/W	
Operating Temperature	-55 to 85 °C	
Storage Temperature	-55 to 150 °C	

Operation of this device outside the maximum ratings may cause permanent damage.

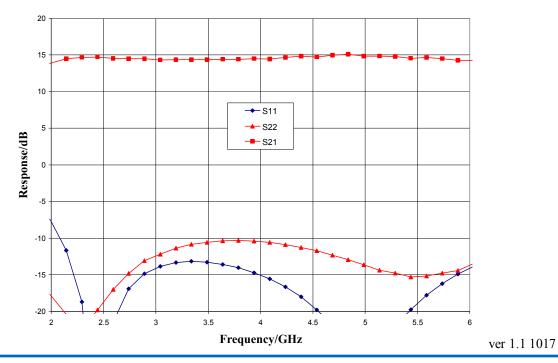
Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Vdd	3.0	5.0	8.0	V
Idd		45		mA

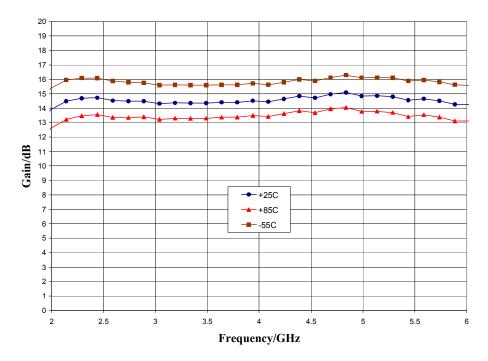
Electrical performance is measured at specific test conditions. Electrical specifications are not guaranteed over all recommended operating conditions.

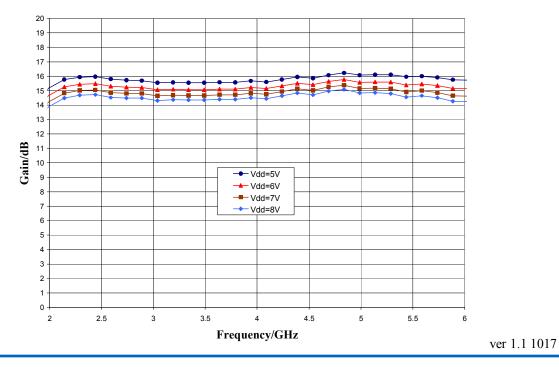

Parameter	Min	Тур	Max	Units
Frequency Range	2 - 6			GHz
Gain	11.5	11.5 14.5 18		dB
Noise Figure		4.5		dB
Input Return Loss		15		dB
Output Return Loss		10		dB
Output P1dB	11	13.5		dBm
Output IP3		23.5		dBm
Supply Current	30	45	60	mA
Gain Temperature Coefficient		0.015		dB/°C
Noise Figure Temperature Coefficient		0.01		dB/°C

Electrical Specifications, $V_{dd} = 3.0 \text{ V}$ to 8.0 V, $T_A = 25 \text{ }^{\circ}\text{C}$

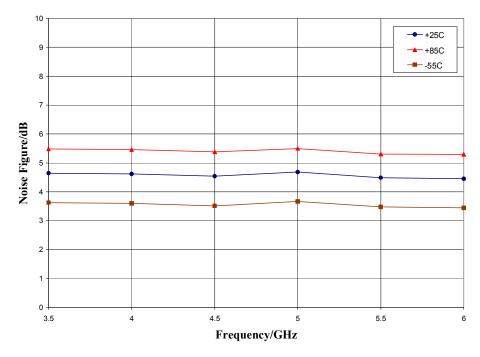

ver 1.1 1017

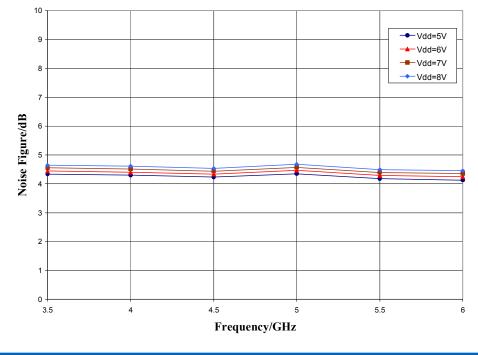
Broadband Performance, $V_{dd} = 8.0$ V, $I_{dd} = 45$ mA, $T_A = 25$ °C


Narrow-band Performance, $V_{dd} = 8.0 \text{ V}$, $I_{dd} = 45 \text{ mA}$, $T_A = 25 \text{ }^{\circ}\text{C}$


Custom MMIC 300 Apollo Drive Chelmsford, MA 01824 Phone (978) 467-4290 Fax (978) 467-4294 Visit us online at www.custommmic.com

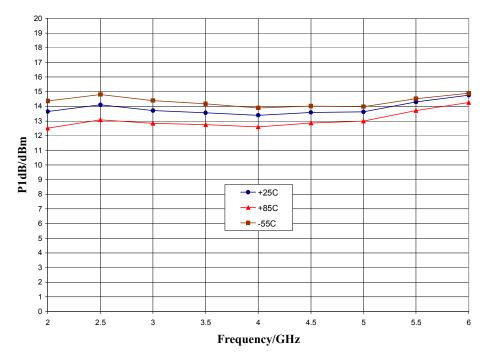
Gain vs. Temperature, $V_{dd} = 8.0 V$


Gain vs. Supply Voltage, $T_A = 25 \ ^{\circ}C$

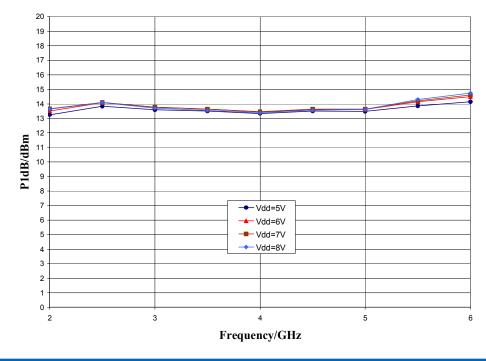

Custom MMIC 300 Apollo Drive Chelmsford, MA 01824 Phone (978) 467-4290 Fax (978) 467-4294 Visit us online at www.custommmic.com

Noise Figure vs. Temperature, $V_{dd} = 8.0 V$

Noise Figure vs. Supply Voltage, $T_A = 25 \ ^{\circ}C$

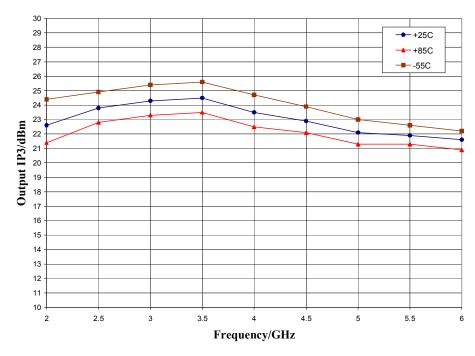


ver 1.1 1017

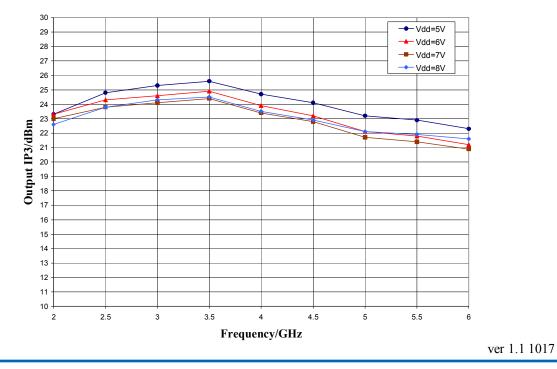

Custom MMIC 300 Apollo Drive Chelmsford, MA 01824 Phone (978) 467-4290 Fax (978) 467-4294 Visit us online at www.custommmic.com

P1dB vs. Temperature, $V_{dd} = 8.0 V$

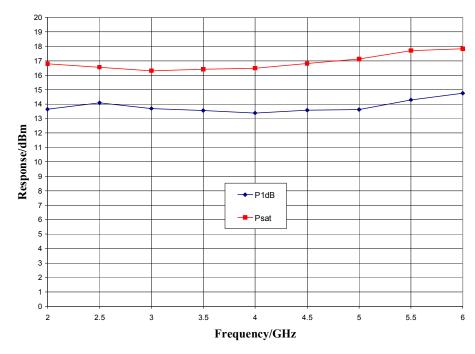
P1dB vs. Supply Voltage, $T_A = 25 \ ^{\circ}C$



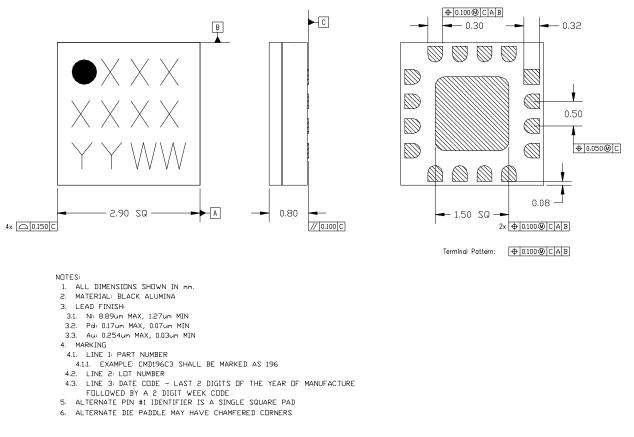
ver 1.1 1017


Custom MMIC 300 Apollo Drive Chelmsford, MA 01824 Phone (978) 467-4290 Fax (978) 467-4294 Visit us online at www.custommmic.com

Output IP3 vs. Temperature, $V_{dd} = 8.0 V$


Output IP3 vs. Supply Voltage, $T_A = 25 \ ^{\circ}C$

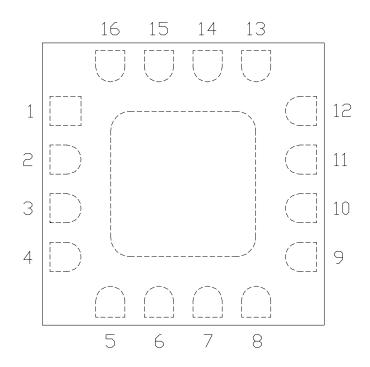
Custom MMIC 300 Apollo Drive Chelmsford, MA 01824 Phone (978) 467-4290 Fax (978) 467-4294 Visit us online at www.custommmic.com


Output Power, Vdd = 8.0 V, $T_A = 25 \ ^{\circ}C$

Mechanical Information

Package Information and Dimensions

Recommended PCB Land Pattern


Custom MMIC Design Services recommends that the user develop the land pattern that will provide the best design for proper solder reflow and device attach for their specific application. Please review Custom MMIC Application Note AN 105 for a recommended land pattern approach.

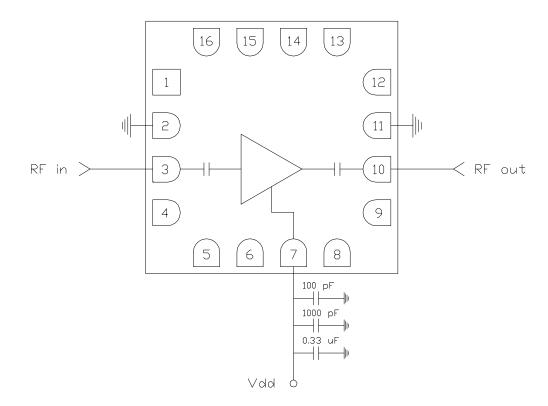
Recommended Solder Reflow Profile

Custom MMIC Design Services recommends screen printing with belt furnace reflow to ensure proper solder reflow and device attach. Please review Custom MMIC Application Note AN 102 for a recommended solder reflow profile.

Pin Diagram

Functional Description

Pin	Function	Description	Schematic
1, 4-6, 8, 9, 12- 16	N/C	No connection required. These pins may be connected to RF/DC ground.	
3	RF in	DC blocked and 50 ohm matched	RF in O
7	Vdd	Power supply voltage Decoupling and bypass caps required	Vdd =
10	RF out	DC blocked and 50 ohm matched	——————————————————————————————————————
2, 11 and die paddle	Ground	Connect to RF / DC ground	GND ==


ver 1.1 1017

Custom MMIC 300 Apollo Drive Chelmsford, MA 01824 Phone (978) 467-4290 Fax (978) 467-4294 Visit us online at www.custommmic.com

Applications Information

Application Circuit

Biasing and Operation

The CMD231C3 is biased with a single positive drain supply. Performance is optimized when the drain voltage is set between +5.0 V and +8.0V.

Turn ON procedure:

1. Apply drain voltage V_{dd} and set to +8 V

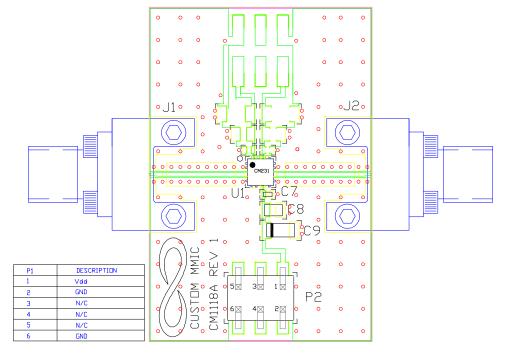
Turn OFF procedure:

1. Turn off drain voltage V_{dd}

RF power can be applied at any time.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

ver 1.1 1017



Applications Information

Evaluation Board

The circuit board shown has been developed for optimized assembly at CMDS. A sufficient number of via holes should be used to connect the top and bottom ground planes. As surface mount processes vary, careful process development is recommended.

Bill of Material

Designator	Value	Description
J1, J2		SMA End Launch Connector
Р2		6 Pin Header
C9	0.33 µF	Capacitor, Tantalum
C8	1000 pF	Capacitor, 0603
C7	100 pF	Capacitor, 0402
U1		CMD231C3 Low Noise Amplifier
РСВ		CM1118A Evaluation PCB

ver 1.1 1017

Custom MMIC 300 Apollo Drive Chelmsford, MA 01824 Phone (978) 467-4290 Fax (978) 467-4294 Visit us online at www.custommmic.com