Solid state, true DC USB RF SPDT Switch Matrix

USB-2SP2T-DCH

50 Ω DC to 8000 MHz

The Big Deal

•DC passing & ultra-wide bandwidth, DC to 8 GHz

- •Dual SPDT switch with single USB interface
- •High isolation, 50 dB typ up to 4 GHz
- •High power handling, +35 dBm max

Software Package Case Style: QM2468

Model No.	Description	Qty.
USB-2SP2T-DCH	Switch Matrix	1
Included Accessories		

MUSB-CBL-3+ 2.6 ft USB cable

1

Typical Applications

- •Satcom / GNSS antenna switching (RF & DC paths)
- •Signal routing / switch matrices
- •High volume production testing / ATE
- •Design verification testing

Product Overview

RoHS Compliant

See our web site for RoHS Compliance methodologies and qualifications

Mini-Circuits' USB-2SP2T-DCH is a low cost, USB controlled, solid state matrix, containing two independent SPDT RF switches. Each fast switching, absorptive SPDT switch operates from true DC all the way to 8 GHz with 10 µs typical switch transition speed. High linearity (+50 dBm typ IP3), low insertion loss (1.5 dB typ) and high isolation (50 dB typical) allow the model to be used for a wide variety of RF applications.

Full software support is provided for USB control, including our user-friendly GUI application for Windows and a full API with programming instructions for Windows and Linux environments (both 32-bit and 64-bit systems). The latest version of the full software package can be downloaded from https://www.minicircuits.com/softwaredownload/solidstate.html at any time.

The USB-2SP2T-DCH is housed in a compact, low profile, rugged metal case (4.58" x 2.00" x 0.475") with 6 SMA (F) connectors (COM, 1 and 2 for each switch), and a USB Mini-B port for power control.

Key Features

Feature	Advantages
High speed switch transition (10 µsec typ)	High speed switching reduces the time the signal paths are interrupted and allows the switch to be used in a wider range of applications.
High Linearity (IP3 50 dBm typ.)	Results in little or negligible inter-modulation generation, meeting requirements for digital communications signals
Low insertion loss (1.5 dB typ)	Results in reduced system loss and heat build up
Full software support included	Mini-Circuits' full software package, programming and user manual are available for down load from https://www.minicircuits.com/softwaredownload/solidstate.html at no extra cost.

<u>Trademarks:</u> Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Linux is a registered trademark of Linus Torvalds. Pentium is a registered trademark of Intel Corporation. Neither Mini-Circuits nor the Mini-Circuits USB-2SP2T-DCH are affiliated with or endorsed by the owners of the above referenced trademarks

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation.

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

USB-2SP2T-DCH

Electrical Specifications @ 0 to 50°C

Parameter	Port	Conditions	Min.	Тур.	Max.	Units	
Operating Frequency			DC		8000	MHz	
		DC to 300 MHz	-	0.75	1.2		
		300 - 3000 MHz		1.0	1.5	dB	
Insertion Loss	COM to any active port	3000 - 6000 MHz		1.3	2.5		
		6000 - 8000 MHz		1.7	3.0		
		DC to 300 MHz	70	90	_		
	Between ports 1 and 2 of each	300 - 3000 MHz	46	57	-		
	switch	3000 - 6000 MHz	33	44	-		
		6000 - 8000 MHz	28	37	-		
Isolation		DC to 300 MHz	62	81	_	dB	
		300 - 3000 MHz	40	51	-		
	COM to any terminated port	3000 - 6000 MHz	31	41	-		
		6000 - 8000 MHz	26	36	-		
	Switch A to Switch B	DC to 8000 MHz	71	103	_		
	COM or any active port	DC to 3000 MHz	-	1.20	_	- :1	
		3000 - 6000 MHz		1.25	-		
VOND		6000 - 8000 MHz	-	1.40	-		
VSWR	Any terminated port	DC to 3000 MHz	-	1.15	_		
		3000 - 6000 MHz	-	1.30	-		
		6000 - 8000 MHz	-	1.35	-		
Power Input @1 dB Compression ^{1,2,3}	COM to any active port	40 to 8000 MHz	-	38	-	dBm	
IP3 ^{3,4}	COM to any active port	40 to 8000 MHz	-	50	-	dBm	
Transition Time ⁵	-		-	10	14	μs	
Minimum dwell time ⁶	High Speed Mode		-	20	-	μs	
Switching Time (USB) ⁷	-	-	-	2	-	ms	
Rated voltage	LISP port	-	4.75	5	5.25	V	
Rated Current	USB port	-	-	150	200	mA	
0	COM to any active port	Hot Switching ¹	-	-	+23	dBm	
Operating RF Input Power	Any terminated port	Note 1	-	-	+23		
Fower	COM to any active port	Through path ²	-	-	+35]	
DC bias voltage	Any RF port	-	-7	-	7	V	
DC pass-through current	COM to any active port		-60	-	60	mA	

¹ Max operating power at terminated port degrades linearly below 20 MHz to +17 dBm at 2 MHz and remains constant from 2 MHz to DC

² Max operating power at through path degrades linearly below 30 MHz to +25 dBm at 2 MHz and remains constant from 2 MHz to DC

³ Compression and IP3 degrade below 40 MHz

⁴ IP3 Tested with 1 MHz span between signals.

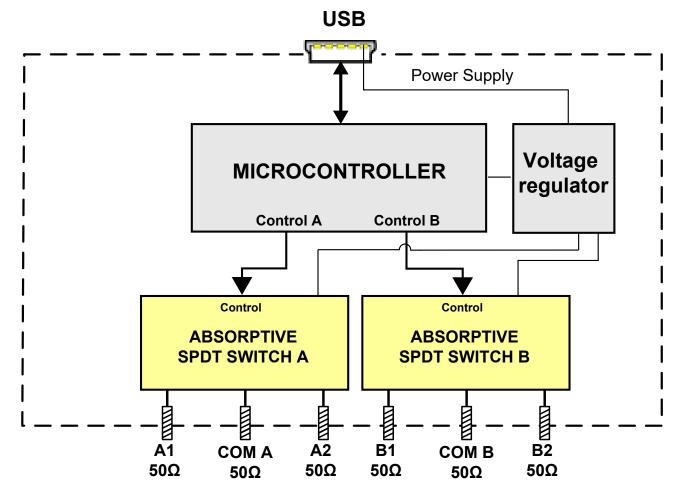
⁵ Transition time spec represents the time that the RF signal paths are interrupted during switching and thus is specified without communication delays.

⁶ Minimum dwell time is the shortest time that can be achieved between 2 switch transitions when programming an automated switch sequence.

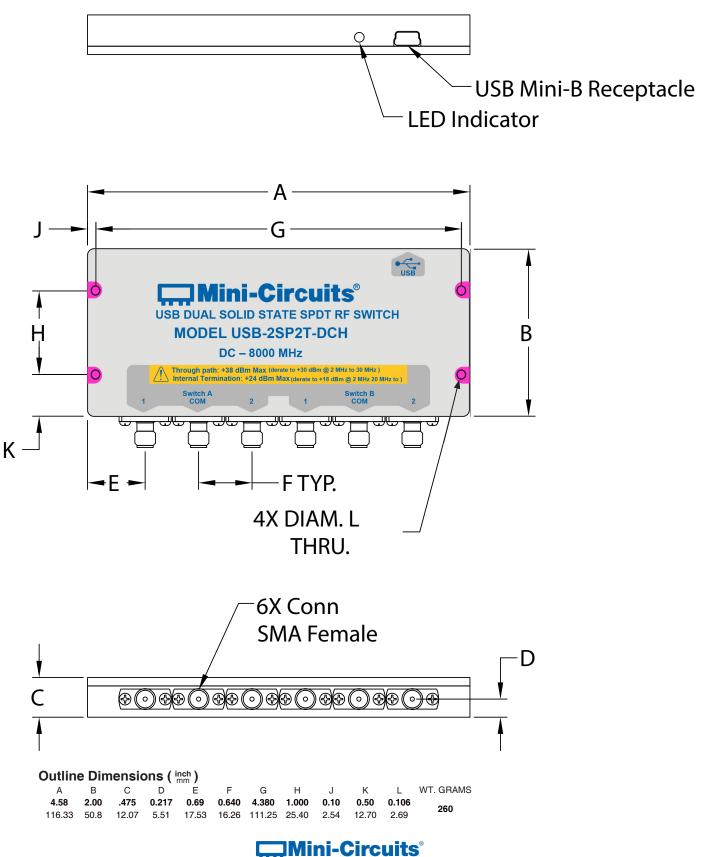
⁷ Switching time(USB) is the time from issuing a single software command via USB to the switch state changing. The most significant factor is the host PC, influenced by CPU load and USB protocol. The time shown is an estimate for a medium CPU load and USB 2.0 connection.

Absolute Maximum Ratings

Operating Temperature		0°C to 50°C	
Storage Temperature		-20°C to 60°C	
DC supply voltage max.		6V	
RF power into termination	DC - 20 MHz	Derate linearly from +24 dBm@20 Mhz to +18 dBm@ 2MHz and remains constant from 2 MHz to DC	
	20 - 8000 MHz	+24 dBm	
RF power @ Through Path	DC - 30 MHz	Derate linearly from +38 dBm@30 MHz to +28 dBm at 2 MHz and remains constant from 2 MHz to DC	
	30 - 8000 MHz	38 dBm	
DC voltage @ RF Ports		±7V	
DC pass-through current		80mA	

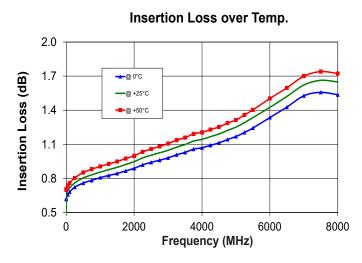

Permanent damage may occur if any of these limits are exceeded. Operating in the range between operating power limits and absolute maximum ratings for extended periods of time may result in reduced life and reliability.

Simplified Diagram

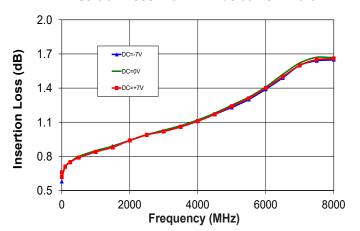

USB-2SP2T-DCH

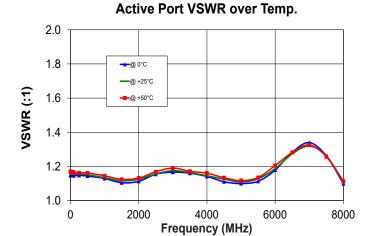
Connections

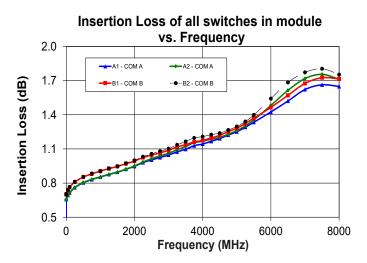
RF SPDT Switch A (1, 2, COM)	(SMA female)
RF SPDT Switch B (1, 2, COM)	(SMA female)
USB	(USB type Mini-B receptacle)

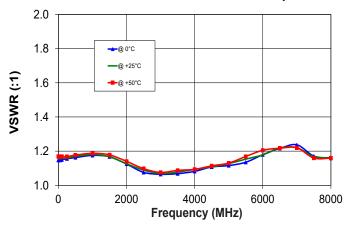


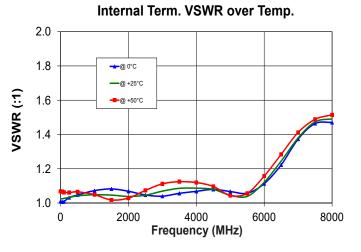
Outline Drawing (QM2468)

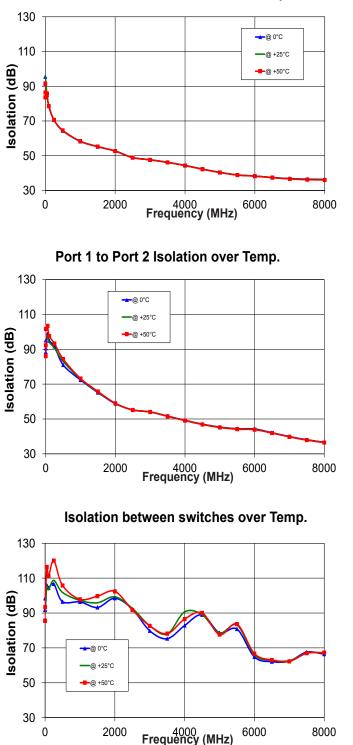



USB-2SP2T-DCH


Typical Performance Curves


Insertion Loss with DC Bias at COM Port.




Common Port VSWR over Temp.

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

Typical Performance Curves (Continued)

Com to Port Isolation over Temp.

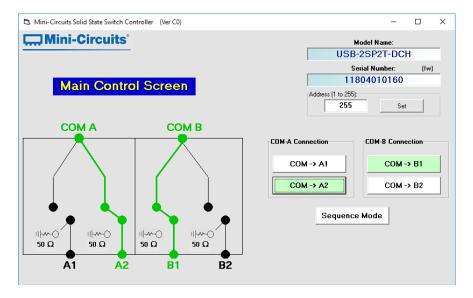
USB-2SP2T-DCH

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

Software & Documentation Download:

 Mini-Circuits' full software and support package including user guide, Windows GUI, DLL files, programming manual and examples can be downloaded free of charge from

https://www.minicircuits.com/softwaredownload/solidstate.html


Please contact testsolutions@minicircuits.com for support

Minimum System Requirements

Parameter	Requirements	
Interface	USB HID	
	GUI:	Windows 32 & 64 bit systems from Windows 98 up to Windows 10
System requirements	USB API (ActiveX & .Net)	Windows 32 & 64 bit systems with ActiveX or .Net support from Windows 98 up to Windows 10
	USB direct programming support	Linux, Windows systems from Windows 98 up to Windows 10
Hardware	Pentium [®] II or higher, RAM 256 MB	

Graphical User Interface (GUI) for Windows Key Features:

- Set each switch manually
- Set timed sequence of switching states
- Configure switch address and upgrade Firmware

Application Programming Interface (API) Windows Support:

- API DLL files exposing the full switch functionality See programming manual at https://www.minicircuits.com/softwaredownload/Prog_Manual-Solid_State_Switch.pdf for details
 - · ActiveX COM DLL file for creation of 32-bit programs
 - .Net library DLL file for creation of 32 / 64-bit programs
- Supported by most common programming environments (refer to application note <u>AN-49-001</u> for summary of tested environments)

Linux Support:

 Full switch control in a Linux environment is achieved by way of USB interrupt commands. See programming manual at <u>https://www.minicircuits.com/softwaredownload/Prog_Manual-H_Series_Switches.pdf</u> for details

USB-2SP2T-DCH

Ordering, Pricing & Availability Information see our web site

Model	Description
USB-2SP2T-DCH	USB RF SPDT Switch matrix

Optional Accessories	Description
MUSB-CBL-3+ (Spare)	2.6 ft (0.8 m) USB Cable: USB type A(Male) to USB type Mini-B(Male)
MUSB-CBL-7+	6.6 ft (2.0 m) USB Cable: USB type A(Male) to USB type Mini-B(Male)

Additional Notes

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at <u>www.minicircuits.com/MCLStore/terms.jsp</u>