


# 60W Solid State Power Amplifier 8GHz~11GHz





#### **Features**

- · Wideband Solid State Power Amplifier
- Gain: 24 dB Typical
- Psat: +48dBm Typical
- Supply Voltage: +36V

## **Typical Applications**

- Military & Defense Applications
- Wireless Infrastructure
- **Test and Measurement**
- X-band radar

#### Electrical Specifications, TA = +25°C

| Parameter                                      | Min.                           | Тур.              | Max. | Units |
|------------------------------------------------|--------------------------------|-------------------|------|-------|
| Frequency Range                                | 8 – 11                         |                   | GHz  |       |
| Gain                                           |                                | 24                |      | dB    |
| Gain Flatness                                  |                                | ±2                |      | dB    |
| Gain Variation Over Temperature<br>(-45 ~ +85) |                                | ±3                |      | dB    |
| Input Return Loss                              |                                | -14               |      | dB    |
| Output Return Loss                             |                                | -16               |      | dB    |
| Saturated Output Power (Psat)*                 |                                | 48                |      | dBm   |
| Supply Current (VDC=+36V)                      |                                | 470               | 7000 | mA    |
| Isolation S12                                  |                                | 65                |      | dB    |
| Input Max Power (No damage)                    | Psat – Gain                    |                   | dBm  |       |
| Weight (No heatsink)                           | 1285                           |                   | æ    |       |
| Impedance                                      | 50                             |                   | Ohms |       |
| Input / Output Connectors                      | SMA-Female                     |                   |      |       |
| Finish                                         | Nickel Plated                  |                   |      |       |
| Material                                       |                                | Aluminum / Copper |      |       |
|                                                | Epoxy Sealed (Standard)        |                   |      |       |
| Package Sealing                                | Hermetically Sealed (Optional) |                   |      |       |

<sup>\*</sup> P1dB, P3dB and Psat power testing signal: 200µs pulse width with 10% duty cycle.

RF-LAMBDA INC. www.rflambda.com

<sup>\*</sup> For average CW power testing or increased duty cycle, a 5dB back off from Psat is required unless water/oil cooling system is applied.



| Absolute Maximum Ratings |             |  |
|--------------------------|-------------|--|
| Supply Voltage           | +6oVDC      |  |
| RF Input Power           | Psat – Gain |  |
| Storage Temperature(°C)  | -50 to +125 |  |

Note: Maximum RF input power is set to assure safety of amplifier. Input power may be increased at own risk to achieve full power of amplifier. Please reference gain and power curves.

| Biasing Up Procedure |                                                                                                   |  |
|----------------------|---------------------------------------------------------------------------------------------------|--|
| Step 1               | Connect input and output with 50 Ohm<br>source/load. (in band VSWR<1.9:1 or >10dB<br>return loss) |  |
| Step 2               | Connect Ground Pin                                                                                |  |
| Step 3               | Connect VDC                                                                                       |  |
| Power OFF Procedure  |                                                                                                   |  |
| Step 1               | Turn Off VDC                                                                                      |  |
| Step 2               | Remove RF Connection                                                                              |  |
| Step 3               | Remove Ground                                                                                     |  |

| Environmental Specifications    |                                                                                                                                      |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Operational<br>Temperature (°C) | -45 ~ +55<br>(Case Temperature must be less than 55C<br>all time)                                                                    |  |
| Altitude                        | 30,000 ft.  (Epoxy Sealed Controlled environment)  60,000 ft 1.0psi min  (Hermetically Sealed Un-controlled environment)  (Optional) |  |
| Vibration                       | 25g RMS (15 degrees 2KHz) endurance, 1<br>hour per axis                                                                              |  |
| Humidity                        | 100% RH at 35c, 95%RH at 40°c                                                                                                        |  |
| Shock                           | 20G for 11msec half sine wave,<br>3 axis both directions                                                                             |  |

Note: The operating temperature for the unit is specified at the package base. It is the user's responsibility to ensure the part is in an environment capable of maintaining the temperature within the specified limits

| Ordering Information |                              |  |
|----------------------|------------------------------|--|
| Part No. Description |                              |  |
| RFLUPAo8G11GB        | 8GHz – 11GHz Power Amplifier |  |

#### **Amplifier Use**

Ensure that the amplifier input and output ports are safely terminated into a proper 50 ohm load before turning on the power. Never operate the amplifier without a load. A proper 50 ohm load is defined as a load with impedance less than 1.9:1 or return loss larger than 10dB relative to 50 Ohm within the specified operating band width.

#### **Power Supply Requirements**

Power supply must be able to provide adequate current for the amplifier. Power supply should be able to provide 1.5 times the typical current or 1.2 times the maximum current (whichever is greater).

In most cases, RF - Lambda amplifiers will withstand severe mismatches without damage. However, operation with poor loads is discouraged. If prolonged operation with poor or unknown loads is expected, an external device such as an isolator or circulator should be used to protect the amplifier.

Ensure that the power is off when connecting or disconnecting the input or output of the amp.

Prevent overdriving the amplifier. Do not exceed the recommended input power level.

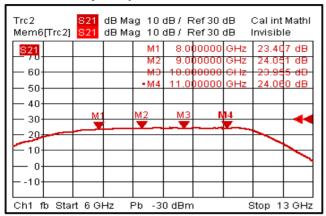
Adequate heat-sinking required for RF amplifier modules. Please inquire.

Amplifiers do not contain Thermal protection, Reverse DC polarity or Over voltage protection with the exception of a few models. Please inquire.

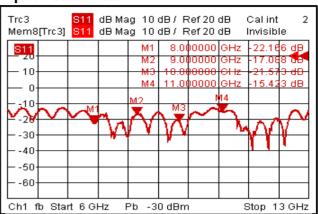
Proper electrostatic discharge (ESD) precautions are recommended to avoid performance degradation or loss of functionality.

What is not covered with warranty?

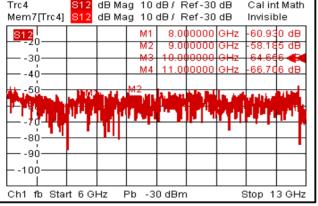
Each RF - Lambda amplifier will go through power and temperature stress testing.


Since the die, ICs or MMICs are fragile, these are not covered by warranty. Any damage to these will NOT be free to repair.

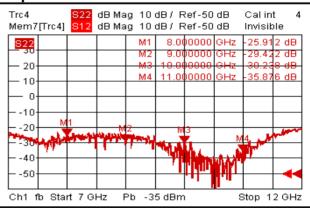
RF-LAMBDA INC. www.rflambda.com


Rev 5. 11-20-2017
Sales: sales@rflambda.com Technical : support@rflambda.com




## Gain vs. Frequency

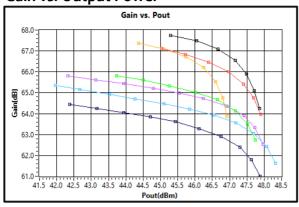


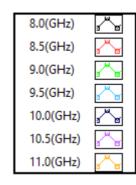

# **Input Return Loss**



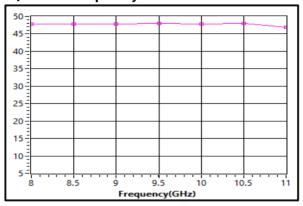
#### <u>Isolation</u> dB Mag 10 dB / Ref-30 dB Cal int Math Mem7[Trc4] dB Mag 10 dB / Ref-30 dB Invisible 8.0000000 GHz -60.930 dB 9.00 10000 GHz -58.1 85 dB -30 11.000000



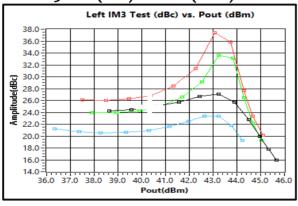

#### **Output Return Loss**



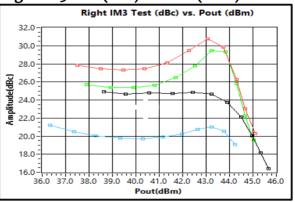

Note: Input/output return loss measurements include attenuators to protect equipment



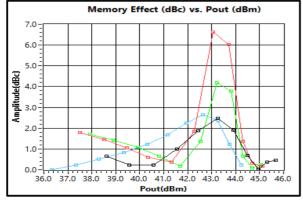

# Gain vs. Output Power







P7dB vs. Frequency

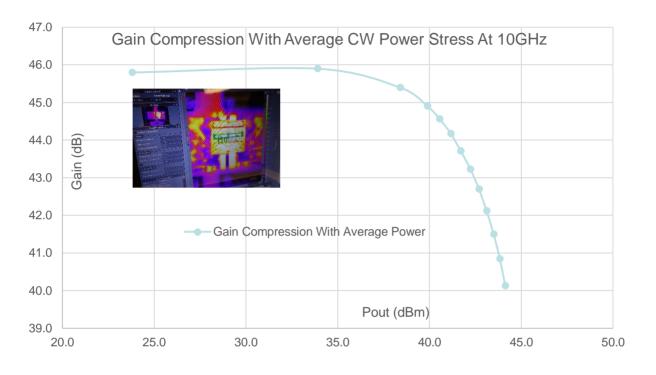


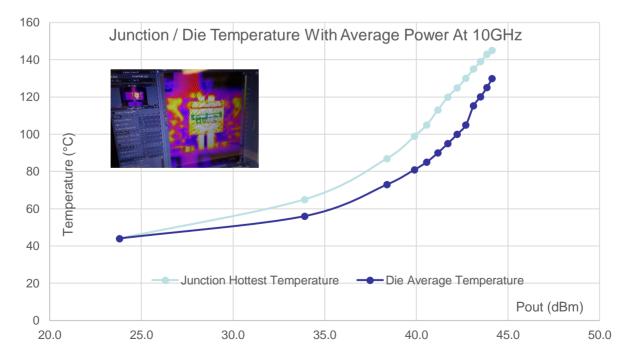

# Left IM<sub>3</sub> Test (dBc) vs Pout (dBm)





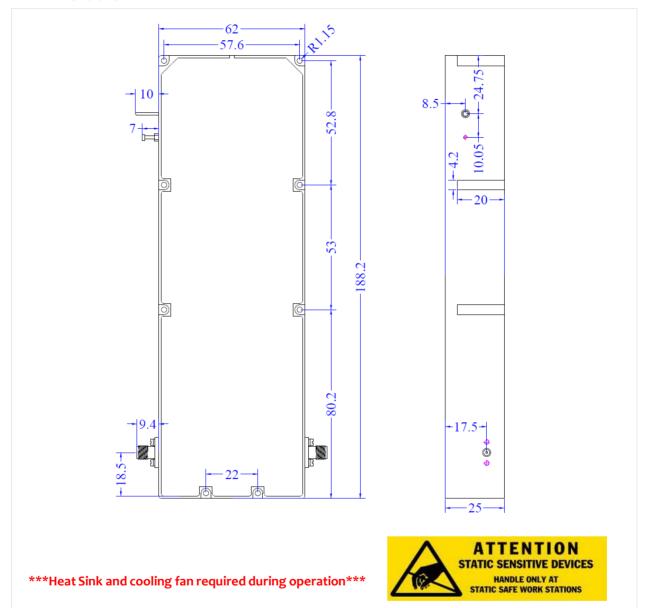



# Memory Effect (dBc) vs Pout (dBm)




| 8.0(GHz)  | 3 <sup>™</sup> 8 |
|-----------|------------------|
| 9.0(GHz)  | 3 8              |
| 10.0(GHz) | 3 <sup>1</sup>   |
| 11.0(GHz) | 3 0              |

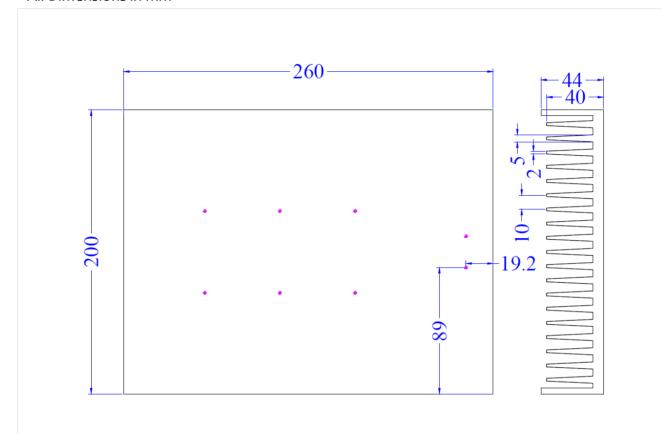



# PA Stress Testing.





# **Outline Drawing:**


All Dimensions in mm





# **Heatsink Outline Drawing:**

All Dimensions in mm



\*\*\*Heat Sink and cooling fan required during operation\*\*\*



## **Important Notice**

The information contained herein is believed to be reliable. RF-Lambda makes no warranties regarding the information contained herein. RF-Lambda assumes no responsibility or liability whatsoever for any of the information contained herein. RF-Lambda assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for RF-Lambda products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

RF-Lambda products are not warranted or authorized for use as critical components in medical, life-saving, or life sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

RF-LAMBDA INC. www.rflambda.com