RF2312 Linear General Purpose Amplifier

General Description

The RF2312 is a general purpose, low cost, high linearity RF amplifier IC. The device is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as an easily cascadable 75Ω gain block. In addition to the high linearity, the gain flatness of better than 0.5 dB from 5-725 MHz, makes this part ideal for cable TV Return Path FDX applications. The device is self-contained with 75Ω input and output impedances, and requires only two external DC biasing elements to operate as specified.

SOIC-8 Package

Key Features

- 5-725 MHz Operation
- 75Ω Internally Matched Input and Output
- 15 dB Small Signal Gain
- 3.8 dB Noise Figure
- +20 dBm Output Power
- Single 5-12 V Positive Power Supply

Applications

- DOCSIS 3.1 Return Path Amplifier
- Laser Diode Driver
- FDX Return Path Amplifier

Ordering Information

Part Number	Description
RF2312SQ	Sample Bag with 25 pieces
RF2312SR	7" Reel with 100 pieces
RF2312TR7	7" Reel with 750 pieces
RF2312TR13	13" Reel with 2500 pieces
RF2312PCK	5-725 MHz PCBA w 5-pc Sample Bag

Functional Block Diagram

RF2312 Linear General Purpose Amplifier

Absolute Maximum Ratings

Recommended Operating Conditions

Parameter	Rating
Storage Temperature	−40 to +150 °C
Maximum Device Voltage (V _{DD)}	6.3 V
Input RF Power	+18 dBm
Output Load VSWR	20 :1

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Parameter	Min	Тур	Max	Unit
Device Voltage (V _{DD})		+5.5	+5.7	V
Ambient Operating Temperature	-40		+85	°C
Operating Current Range	40	100	120	mA
(Icc = 120mA, Pdiss=0.702W, Ta=85C) θ _{JC}		114.9		°C/W
$(Icc = 100mA, Pdiss=0.555W, Ta=85C) \theta_{JC}$		114.1		°C/W
MTTF Ta=85°C, Pdiss=.702W		2170		years

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Parameter	Conditions	Min	Тур	Max	Units	
Operational Frequency Range			5		725	MHz
Gain	At 300 MHz		14.5	15.5		dB
Noise Figure	From 10–700 MHz, -45 to +	85 °C		3.8	4.1	dB
Input Return Loss	Appropriate values for the DC blocking	5MHz		18		dB
	to maintain this Return Loss at the intended operating frequency range.	300MHz		21		dB
		700MHz		22		dB
Output Return Loss	Appropriate values for the DC blocking capacitors and bias inductor are required	5MHz		15		dB
	to maintain this Return Loss at the intended operating frequency range.	300MHz		27		dB
		700MHz		17		dB
Reverse Isolation				19		dB
Output IP3	At 7 MHz (2 Tone 5 dBm / Tone 1 MHz Spacing)			+45		dBm
Output IP3	At 300 MHz (2 Tone 5 dBm / Tone 6 MHz Spacing)			+42		dBm
Output IP3	At 700 MHz (2 Tone 5 dBm / Tone 6 MHz Spacing)			+36		dBm
Output IP2	At 5 MHz (2 Tone 3 dBm / Tone 6 MHz Spacing)			+61		dBm
Output IP2	At 300 MHz (2 Tone 3 dBm)	/Tone 6 MHz Spacing)		+59		dBm
Output IP2	At 700 MHz (2 Tone 3 dBm / Tone 6 MHz Spacing)			+50		dBm
Output P1dB	At 5 MHz			+22.8		dBm
Output P1dB	At 300 MHz			+22		dBm
Output P1dB	At 700 MHz			+20		dBm

Notes:

Test conditions unless otherwise noted: V_{DD} = +9.0 V, Temp = +25°C in a 75 Ω system.

RF2312 Linear General Purpose Amplifier

77 Channels

Parameter	Conditions	Min	Typical	Max	Units
	77 Channels to 550 MHz at 10 dBmV,				
CSO	61.25 MHz		>86		dBc
	83.25 MHz		>86		dBc
	193.25 MHz		76		dBc
	313.2625 MHz		72		dBc
	547.25 MHz		64		dBc
СТВ	61.25 MHz		>86		dBc
	83.25 MHz		>86		dBc
	193.25 MHz		86		dBc
	313.2625 MHz		84		dBc
	547.25 MHz		83		dBc
CNR		65	66		dB

RF2312 Linear General Purpose Amplifier

Performance Plots

Unless otherwise specified: V_{DD} = 9.0V in a 75 Ω system.

QCCVO.

RF2312 Linear General Purpose Amplifier

Performance Plots (Cont'd)

Unless otherwise specified: V_{DD} = 9.0V in a 75 Ω system.

QCCVO.

RF2312 Linear General Purpose Amplifier

Performance Plots (Cont'd)

Unless otherwise specified: V_{DD} = 9.0V in a 75 Ω system.

RF2312 Linear General Purpose Amplifier

Evaluation Board Schematic

Bill of Material – RF2312

Reference Designator	Description	Manufacturer	Manufacturer PN	
PCB	75Ω PCB, SW1012-410	Qorvo		
U1	15 dB 5 – 700 MHz Linear RF Amplifier	Qorvo	RF2312	
C1, C2	CAP, 0.1 uF, X7R, 0603	Johanson Technology	250R14W104KV4T	
C3	CAP, 0.1 uF, 5%, 25V, C0G, 1206	Murata Electronics	GRM31C5C1E104JA01L	
C4	CAP, 0.5 pF, 25V, LF, 0402	AVX Asia Limited	04023J0R5ABSTR	
L1	IND, 6.8 uH, 5%, W/W, 1008	Coilcraft, Inc.	1008LS-682XJLC	
L2	IND, 3.9 nH, 130 mA, 0402	Murata Electronics	LQP15MN3N9B02D	
R1, R2, R3, R4	RES, 121 Ω, 5%, 1/10W, 0805	Kamaya, Inc	RMC1/10-121JTP	

Application Circuit Schematic

RF2312 Linear General Purpose Amplifier

Evaluation Board Layout

Bottom Layer

RF2312 Linear General Purpose Amplifier

Pin Configuration and Description

Pin Number	Label	Description
1	RF IN	RF input pin. This pin is NOT internally DC-blocked. A DC-blocking capacitor, suitable for the frequency of operation, should be used in all applications. The device has internal feedback, and not using a DC blocking capacitor will disable the temperature compensation. The bias of the device can be controlled by this pin. Adding an optional $1k\Omega$ resistor to ground on this pin reduces the bias level, which may be compensated for by a higher supply voltage to maintain the appropriate bias level. The net effect of this is an increased output power capability, as well as higher linearity for signals with high crest factors. DC-coupling of the input is not allowed, because this will override the internal feedback loop and cause temperature instability.
2	GND	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane. Each ground pin should have a via to the ground plane.
3	GND	Same as pin 2
4	GND	Same as pin 2
5	GND	Same as pin 2
6	GND	Same as pin 2
7	GND	Same as pin 2
8	RF OUT	RF output and bias pin. Because DC is present on this pin, a DC-blocking capacitor, suitable for the frequency of operation, should be used in most applications. For biasing, an RF choke in series with a resistor is needed. The value for the resistor R _C is $30 \Omega (0.5 \text{ W})$ for V _{CC} =9 V and 21Ω for V _{CC} =8 V. The DC voltage on this pin is typically 6.0 V with a current of 100 mA. In lower power applications the value of R _C can be increased to lower the current and V _D on this pin.

RF2312 Linear General Purpose Amplifier

Package Marking and Dimensions

Notes:

- 1. All dimensions are in mm. Angles are in degrees.
- 2. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

Trace Code to be assigned by subcon

RF2312 Linear General Purpose Amplifier

Handling Precautions

Parameter	Rating	Standard		
ESD-Human Body Model (HBM)	Class 1B	ESDA/JEDEC JS-001-2012		Caution!
ESD-Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F	124	ESD-Sensitive Device
MSL-Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020		

Solderability

Compatible with both lead-free (260 °C max. reflow temp.) soldering process. Solder profiles available upon request.

Contact plating: Matte Sn

RoHS Compliance

This part is compliant with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU. This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free
- Qorvo Green

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Tel: 1-844-890-8163

Web: www.qorvo.com

Email: customer.support@qorvo.com

For technical questions and application information: Email: sicapplications.engineering@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.