QPA5368 CATV Return Path MCM 300MHz 35dB

Product Description

The QPA5368 is an Integrated Reverse Amplifier Module. The part employs Silicon Bipolar die, has high output capability and is operated from 5 MHz to 300 MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability.

Functional Block Diagram

20 pin, 11.0 mm x 8.5 mm x 1.375 mm package

Product Features

- Excellent Linearity
- Extremely High Output Capability
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable under all Terminations
- 35.6 dB Typical Gain at 300MHz
- 195 mA Typical at 12VDC
- Temperature Sensing Feature

Applications

- Head End Equipment
- $5-300 \text{ MHz} 75 \Omega$ Amplifier for Reverse Path Systems

Ordering Information

Part No.	Description
QPA5368SB	Sample bag 5 pcs
QPA5368SQ	Sample bag 25 pcs
QPA5368SR	7" Reel with 100 pcs
QPA5368TR7	7" Reel with 500 pcs
QPA5368TR13	13" Reel with 1000 pcs
QPA5368PCBA-410	Fully assembled Evaluation Board

Absolute Maximum Ratings

Parameter	Value / Range		
RF Input Voltage (single tone)	65 dBmV		
DC Supply over-voltage (5 minutes)	+14 V		
Storage Temperature	−40 to 100 °C		
Operating Mounting Base Temperature	−30 to 100 °C		
Moisture Sensitivity Level IPC/JEDEC J-STD-20	MSL 3 @ 260 °C		

Operation of this device outside the parameter ranges given above may cause permanent damage.

Electrical Specifications –

Parameter	Conditions (V+=12V, TMB=30°C, ZS=ZL=75Ω)	Min	Тур _	Max 300	Units MHz
Operational Frequency Range	-	5			
Current (I _{DD})	-	180	195	210	mA
Gain	f _o = 5 MHz		35.3		
Gain	f _o = 300 MHz	34.8	35.6	36.5	-10
Gain Flatness	5 to 300 MHz	_		1.0	dB
Gain Slope	pe 5 to 300 MHz ^[1]			1.0	
	f ₀ = 5 to 220 MHz	20		-	
Input Return Loss	f _o = 220 to 300 MHz	18		-	dB
	f ₀ = 5 to 220 MHz	20		-	15
Output Return Loss	f _o = 220 to 300 MHz	18		-	dB
Noise Figure	f ₀ = 300 MHz	_	3.9	4.1	dB
СТВ				-72	dBc
XMOD	7 ch flat; Vo = 50 dBmV ^[2]			-63	dBc
CSO				-75	dBc
СТВ				-65	dBc
XMOD	28 ch flat; Vo = 46 dBmV ^[3]			-58	dBc
CSO				-70	dBc
СТВ			-62	-59	dBc
XMOD	42 ch flat; Vo = 44 dBmV ^[4]		-62	-59	dBc
CSO			-65	-62	dBc
OIP2	Vo = 11 dBm ^[5]		70		dBm
OIP3	Vo = 11 dBm ^[6]		44		dBm
Thermal Resistance	Junction to Mounting Base		25		K/W

1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.

2. 7 channels, NTSC frequency raster: T7-T13 (7.0MHz to 43.0MHz), +50dBmV flat output level.

3. 28 channels, NTSC frequency raster: T7-T13 (7.0MHz to 43.0MHz), 2-6 (55.25MHz to 83.25MHz),

A-11 (121.25MHz to 199.25MHz), +46dBmV flat output level.

 42 channels, NTSC frequency raster: T7-T13 (7.0MHz to 43.0MHz), 2-6 (55.25MHz to 83.25MHz), A-W (121.25MHz to 295.25MHz), +44dBmV flat output level.

5. 2-tone, 11dBm/tone, f1=99.0MHz, f2=100.0MHz,1 MHz tone spacing, fm=199.0MHz (f1+f2)

6. 2-tone, 11dBm/tone, f1=199.0MHz, f2=200.0MHz,1 MHz tone spacing, fm=201.0MHz (2xf2-f1)

Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by ANSI/SCTE 6. Composite Triple Beat (CTB) The CTB parameter is defined by ANSI/SCTE 6. Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested. Carrier to Intermodulation Noise (CIN) - The CIN parameter is defined by ANSI/SCTE 17 (Test procedure for carrier to noise).

QPA5368

QOCVO

Evaluation Board Assembly Drawing

Note:

The ground plane of the QPA5368 module should be soldered onto a board equipped with as many thermal vias as possible. Underneath this thermal via array a heat sink with thermal grease needs to be placed which is able to dissipate the complete module DC power. In any case the module backside temperature should not exceed 100°C.

Evaluation Board Schematic

Evaluation Board Bill of Materials (BOM)

Reference Des.	Value	Description	Manuf.	Part Number	
PCB	Rev A	PCB QPA5368 – EVB 843B	8 – EVB 843B Qorvo		
C1, C7		DNI (optional to improve matching)			
C2, C3	0.5 pF	CAP, 0402, ±0.1pF, 50V, COG			
C4	10 pF	CAP, 0402, 5%, 50V, COG			
C5	6.8 pF	CAP, 0402, 5%, 50V, COG			
C6, C9	10 nF	CAP, 0402, 10%, 50V, X7R			
C8	5.6 pF	CAP, 0402, ±0.25pF, 50V, COG			
C10, C11	4.7 nF	CAP, 0402, 10%, 50V, X7R			
R1, R2	51 Ω	RES, 0402, 1%, TK100			
R3	3.9 Ω	RES, 0402, 1%, TK100			
R4	12Ω	RES, 0402, 1%, TK100			
R5	3.3 kΩ	RES, 0402, 1%, TK100			
J1	0Ω	RES, 0603			
L1	47 nH	IND, 0402, 5%			
L2	82 nH	IND, 0402, 5%			
L3	12 nH	IND, 0402, 5%			
L4	15 nH	IND, 0402, 5%			
L5	4.7 nH	IND, 0402, ±0.3nH			
FB1	1,5 kΩ	Impedance Bead, 0603, 1k5 @ 100MHz, LM, DCR 0.75 Ω, 250mA	TaiyoYuden	BK 1608 LM 152	
D1	13 V	Diode, TVS, PTVS13VS1UR, SOD123W	NXP	PTVS13VS1UR	
TR1		Transformer 1:1	Mini-RF	MRFXF0021	
TR1		Transformer 1:4	Mini-RF MRFXF2753		
U1	DUT	QPA5368	Qorvo		

Notes:

Pin Configuration

Pin Description

Pin No.	Label	Description
1	V+ 1	Supply Voltage 12V
2	RF IN (+)	RF AMP Positive Input
3	N.C.	
4	RF IN (-)	RF AMP Negative Input
5	GND	RF/DC ground
6 - 10	N.C.	
11	RF OUT (-)	RF AMP Negative Output
12	GND	RF/DC ground
13	V+ 2	Supply Voltage 12V
14	Rt	NTC Output for Temperature Sensing
15	RF OUT (+)	RF AMP Positive Output
16-20	N.C.	

QPA5368 Temperature Sensing Feature

The QPA5368 provides an internal NTC resistor for temperature sensing. This resistor is located right next to the output transistor stage. Within the application circuit the NTC is part of a voltage divider. The output voltage of the voltage divider (Vt) can be correlated to the module backside temperature.

Module Backside Temperature versus Vt (typical values)

Package Outline Drawing (Dimensions in millimeters)

Notes:

- 1. Dimension and tolerance formats conform to ASME Y14.5M-1994.
- 2. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.
- 3. Co-planarity applies to the exposed ground/thermal pad as well as the contact pins.
- 4. Package body length/width does not include plastic flash protrusion across mold parting line.

PCB Metal Land Pattern

RECOMMENDED LAND PATTERN

RECOMMENDED LAND PATTERN MASK

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 2 oz. copper minimum for top and bottom layer metal.
- 3. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25mm (0.10").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.
- 5. Place mounting screws near the part to fasten a back side heat sink.
- 6. Do not apply solder mask to the back side of the PC board in the heat sink contact region.
- 7. Ensure that the backside via region makes good physical contact with the heat sink.

Handling Precautions

Parameter	Rating	Standard		
ESD-Human Body Model (HBM)	Class 1B	ANSI/ESD/JEDEC JS-001-2012		Caution! ESD-Sensitive Device
ESD-Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F		
MSL-Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020		

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: NiPdAu

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

• Halogen Free (Chlorine, Bromine)

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2016 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.