Ceramic **High Pass Filter**

50Ω 2200 to 6000 MHz

The Big Deal

- Small size 2.0 mm x 1.25 mm
- High Power handling
- High rejection
- Ceramic construction

Product Overview

The HFCG-2100+ LTCC High Pass Filter is constructed with 11 layers in order to achieve a miniature size and high repeatability of performance. Wrap-around terminations minimize variations in performance due to parasitics. Covering 2200-6000 MHz, these units offer low insertion loss and good rejection.

Key Features

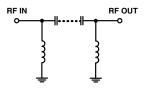
Feature	Advantages		
Small Size (2.0 mm x 1.25 mm)	Allows for high layout density of circuit boards, while minimizing effects of parasitic.		
Wrap around termination	Provides excellent solderability and easy visual inspection capability.		
LTCC construction	Provides a rugged package that is well suited for tough environments including high humidity and high temperature extremes.		

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. G. The parts covered by this specification document are subject to Mini-Circuits trandard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

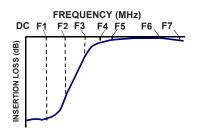
Ceramic High Pass Filter

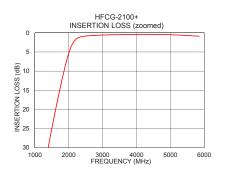
50Ω

2200 to 6000 MHz

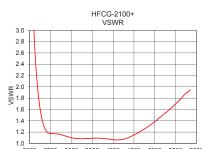

Features

- Small size
- Temperature stable
- LTCC construction
- Excellent power handling, 3W


Applications


- Transmitters / Receivers
- Global positioning system(GPS)
- Satellite broadcast applications
- Wireless local area Network

Functional Schematic




Typical Frequency Response

HFCG-2100+ INSERTION LOSS (Full band)	
0 10 (g) 30 (g) 30	10
FREQUENCY (MHz)	U

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Typical Performance Data at 25°C

CASE STYLE: GE0805C-2 +RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

HFCG-2100+

Electrical Specifications^(1,2) at 25°C

Parameter		F#	Frequency (MHz)	Min.	Тур.	Max.	Unit
	Rejection Loss	DC-F1	DC-1050	40	50	-	dB
Oton Dand		DC-F2	DC-1320	22	33	-	dB
Stop Band	Freq. Cut-Off	F3	2100	-	3.0	-	dB
	VSWR	DC-F2	DC-1320	-	20	-	:1
Pass Band	Insertion Loss	F4-F7	2200-6000	-	2.0	-	dB
		F5-F6	2500-5000	-	1.0	1.8	dB
	VSWR	F5-F6	2500-5000	-	1.6	-	:1

In Application where DC voltage is present at either input or output ports, coupling capacitors are required.
 Measured on Mini-Circuits Characterization Test Board TB-1090+.

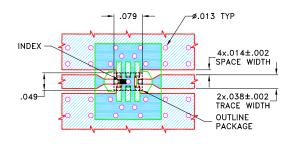
Maximum Ratings			
Operating Temperature	-40°C to 85°C		
Storage Temperature	-55°C to 100°C		
RF Power Input*	3W Max.		

*Passband rating, derate linearly to 1.5W at 85°C ambient Permanent damage may occur if any of these limits are exceeded.

Frequency (MHz)	Insertion Loss (dB)	VSWR (:1)	
10	90.29	119.46	
250	73.97	78.73	
700	61.85	55.19	
950	63.25	48.04	
1050	51.11	45.31	
1320	33.69	37.01	
1380	30.65	35.35	
1600	20.59	25.99	
1700	16.35	20.50	
1900	8.52	9.15	
2100	3.07	2.99	
2110	2.90	2.84	
2200	1.80	1.90	
2300	1.21	1.41	
2500	0.84	1.17	
3000	0.58	1.10	
3040	0.56	1.09	
5000	0.50	1.39	
5600	0.76	1.77	
6000	0.97	0.00	

REV.OR M170934 HFCG-2100+ EDU3268 URJ 190306 Page 2 of 3

High Pass Filter

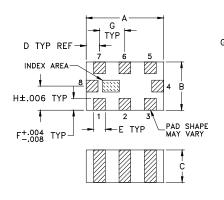


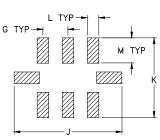
PCB Land Pattern

Pad Connections

INPUT	8
OUTPUT	4
GROUND	1,2,3,5,6,7

Demo Board MCL P/N: TB-1090+ Suggested PCB Layout (PL-615)




NOTES:

 TRACE WIDTH IS SHOWN FOR ROGERS (R04350B) WITH DIELECTRIC THICKNESS .020"±.0015". COPPER: 1/2 Oz. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH MAY NEED TO BE MODIFIED.
 BOTTOM SIDE OF THE PCB IS CONTINUOUS GROUND PLANE. DENOTES PCB COPPER LAYOUT WITH SMOBC (SOLDER MASK OVER BARE COPPER)

DENOTES COPPER LAND PATTERN FREE OF SOLDERMASK

Outline Drawing

Suggested Layout, Tolerance to be within $\pm .002$

Outline Dimensions (inch)

G
)26
.65
Wt.
ms
008

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Min-Circuit's applicable established test performance criteria and measurement instructions. G. The parts covered by this specification document are subject to Min-Circuits and ard limited warranty and terms and conditions (collectivity, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Mini-Circuits